Posted by Laurence Watson

Nuclear fear – by Me2 on Flickr

Is nuclear over-regulated due to public fear and misconceptions of risks?

“Nuclear power seems to be being singled out for treatment that is not necessarily commensurate with the scale of risk. I say that because, in aggregate, as US climate scientist James Hansen often points out that nuclear has a massively beneficial impact on health in terms of lives saved from avoiding air pollution… There is a need for a public discourse about our perception of risk.”

– Baroness Worthington

Our patron, Baroness Worthington, recently brought up an important point in a debate in the House of Lords about  the formal regulatory process justifying consideration of the Advanced Boiling Water Reactor for deployment in the UK, which Hitachi-GE Nuclear Energy Ltd and Horizon Nuclear Power have proposed to construct at Wylfa and Oldbury. The regulatory justification is just part of the broad legal basis that needs to be covered when planning a new nuclear reactor.

Baroness Verma, the Parliamentary Under Secretary of State for Energy and Climate Change noted in reply that “the sector by its very nature is heavily regulated, and rightly so in order to build confidence”. But why does ionizing radiation receive such special treatment when it comes to assessing risk and if excessive regulation to build public confidence is slowing the development of nuclear power should we look at it again, especially in the context of the growing threats of climate change and air pollution?

Understanding relative doses

The EPR regulatory justification document (2010) describes some of the issues and factors at work when it comes to regulation around ionising radiation.

“The overall average annual dose to a member of the public from all sources of radioactivity is 2.7 millisieverts (a measure of dose and abbreviated as mSv) per year. Of this, about 84% is from natural sources, about 15% from medical procedures and about 1% from all other sources, including existing nuclear power stations….[exposure to radiation from these other sources] is limited to 1 mSv per year.”

“But the regulatory regime goes further than the legal 1 mSv limit. It requires operators to use BAT (Best Available Techniques) and ensure that the resulting exposures are below the statutory limits and as low as reasonably achievable (ALARA) [emphasis ours].

However, while the Health Protection Agency describes the increased risk of cancers from 1mSv as undetectable from background levels, the document goes on to say:

“The maximum occupational dose limit which applies to people at work is 20 mSv per year.”

So, while nuclear plants contribute a very small fraction of radiation exposure and are required to minimise this amount as far as is ‘reasonably’ possible, workers can be exposed to more than twenty times this amount. A chest CT scan will give you 6.6mSv. This great video on the most radioactive places around the world covers the workers and places most highly exposed – the very worst place might surprise you.

Wade Allison, Emeritus Professor of Physics at the University of Oxford writes in his book ‘Radiation and Reason’ that health risks from ionising radiation have been overestimated, and that the body does not have a linear response to ionising radiation.

The Linear No-Threshold (LNT) assessment of dosage to risk declares that as a certain dose of ionising radiation results in an increased chance cancer in a proportion of a population, this proportion will stay constant even if the dose becomes very small. If LNT is not correct for ionising radiation, then proceeding on the basis of ALARA (as low as reasonably achievable) is not an appropriate practice for regulation.

As Baroness Worthington pointed out, James Hansen among others has estimated the benefits of nuclear power from decreased air pollution, as well as avoided carbon emissions. Climate scientists have written en masse to call for more nuclear power. It is clear that in their minds the relatively small risks associated with nuclear power are vastly outweighed by the risks associated with continued dependence on unabated fossil fuels for our energy. It is therefore high time we had an informed public debate about these relative risks and looked again at the nuclear regulatory regime in light of our most recent understandings of risk.    

Fortunately Baroness Verma the Government’s Energy Minister in the Lords appears to agree with us as she ended the debate saying:

“I also agree that the discussions need to be much fuller and more informed, and of course I hope that we will take the opportunity to open that debate going forward…

I accept that what we do not want to do is single out a sector which is helping us to meet our carbon targets. We should not overly prescribe for one sector against others.”

So it appears that whichever party wins in the UK elections in May of this year it might herald the start of a debate about nuclear power, risk and regulation that is long overdue. We will be working hard to make sure that happens.


The recent film Pandora’s Promise does an excellent job of covering nuclear fear-mongering (if you haven’t seen it, it’s available on itunes and soon to be on Netflix). Many myths and scares have muddied the debate about realistic safety concerns.

Comments

  1. GORDON DOLAN says:

    Please comment on this development- is it feasible and trustworthy or speculative?

    http://thorconpower.com/

  2. Brian Bingham says:

    the biggest problem that I see is the 20% enrichment requirement.

  3. Gerrit Jan Struik says:

    National Council on Radiation Protection and Measurement (NCRP) gives a few facts about radiation.
    Population exposure from operating of comparable (1GWe ) nuclear and Coal-fired power plants is:
    4.9 person Sv/yr for coal and 0.048 Sv/yr for nuclear .
    This is about a factor 100 greater for the coal-fired plants.
    Besides this,
    Alex Gabbart from ORNL has written about chemical composition of coal and it is a waste to burn coal.
    In the ash is enough thorium and uranium to operate at least TEN (10) 1GWe nuclear power plants.
    Regards
    Gerrit Jan.

Leave a Reply

Sign up for our Weinberg Next Nuclear Newsletter
* = required field

The Alvin Weinberg Foundation’s work has helped us to understand the potential benefits of thorium and next generation nuclear reactors, such as the Molten Salt Reactor.

— All-Party Parliamentary Group on Thorium Energy

@thorium_wf

Highly recommend this Rushlight Summer Showcase event at the @RGS_IBG this June. Have a look and register here https://t.co/xTuCD5r11i
- Monday Apr 24 - 2:26pm

The Power to Change the World. See our Technology Officer @JohnCHLindberg in this thought-provoking TED talk https://t.co/ogi2Km37aR
- Thursday Apr 20 - 7:19am

Categories

  • Economics (90)
  • Efficiency (54)
  • Policy (14)
  • Proliferation (34)
  • Regulation (10)
  • Safety (65)
  • Security (18)
  • Technology advances (24)
  • Uncategorized (54)
  • Waste (54)
  • © The Alvin Weinberg Foundation 2014
    The Alvin Weinberg Foundation is a registered UK charity. Charity number: 1155255
    The Alvin Weinberg Foundation web site uses cookies to record visitor patterns.
    Read our data protection policy

    Design by Tauri-tec Ltd and the Alvin Weinberg Foundation