Archive for the ‘Safety’ Category

Exploring space by exploiting nuclear

Posted by Stephen Tindale on June 16th, 2015

The Philae lander has woken up. When Philae landed on the comet, it was on its side in a valley, so its solar panels could not generate enough electricity to keep the lander’s technology operating once the batteries ran out. As a result, Philae did excellent scientific research for 60 hours, then ‘went to sleep’. Seven months later, the comet is closer to the sun so the solar panels are generating enough power to resume research. This is excellent news. But seven months of research have been lost unnecessarily. Philae should have carried a nuclear power source, as NASA’s Mars Curiosity rover did. Stephan Ulamec, Philae lander manager, was asked last November why Philae didn’t have one. He replied that ‘launching nuclear power sources carries safety and political implications and, in any case, Europe does not have that technology’. (

The safety issue is – as so often with nuclear power – overstated. Mars Curiosity was powered by a small, solid amount of Plutonium-238, completely insoluble in water. Physics professor Ethan Siegel writes that: “This means that even if there’s a disaster on launch, the radioactive material won’t go anywhere, and can not only be retrieved, but reused in future missions.” ( )

Would Europe have been able to obtain the necessary nuclear equipment from NASA? Surely the answer is yes. The space race is over. The Soviet Union put the first person in space; the USA put the first person on the moon. The European Space Agency, Philae’s owner, has been working with NASA on the International Space Station since 1998.

So it was down to politics. Theological opposition to all things nuclear, led by Germany (as most things in Europe are at present), meant that Philae was sent to land on a comet with only intermittent solar photovoltaics to replenish its power supply. Angela Merkel, who has a PhD in quantum chemistry, allowed her politics to obscure her scientific desire for knowledge.

Why I have joined the Alvin Weinberg Foundation

Posted by Stephen Tindale on June 4th, 2015

“I cannot really complain too much about solar utopians: their dreams are noble and ought to be encouraged. On the other hand, when these dreams of solar utopia are used as political instruments to eliminate the nuclear option, I believe it is most important to object.”

Alvin Weinberg, ‘Toward an acceptable nuclear future’, 1977.

I am a former renewable energy utopian – though, since I live in the UK, I am more excited about wind power than I am about solar. I spent 20 years campaigning against nuclear, the last 5 of them as head of Greenpeace UK. I protested outside nuclear power stations. Then I realised that I had been wrong; that renewable energy cannot expand quickly enough to phase out fossil fuels and protect the climate. I concluded that opposition to nuclear power is not compatible with any attempt to control climate change. And, because many of my former colleagues in green groups were continuing with anti-nuclear campaigns, I too felt that it was important to object. So for the last 6 years I have been speaking out in favour of nuclear power, and was delighted last month to start working for the Alvin Weinberg Foundation.

Alvin Weinberg was not only a world-renowned nuclear scientist, but also one of the world’s first climate campaigners. He warned of the dangers of increased carbon dioxide concentrations in the 1970s; over a decade before James Hansen’s historic Congressional evidence in 1988. (That is not in any way intended to downplay Hansen’s immense contribution to climate science or, indeed, to campaigning.) Weinberg also spoke out against the dangers of technology tribalism. We need to use every tool to mitigate the climate and energy crises. We do not need nuclear or renewables; we need nuclear and renewables. That is even more strongly the case today in 2015 than it was in the 1970s.

In the 1977 paper quoted above, Weinberg speaks of the need “to set the nuclear ship back on course”. Thirty -eight years later, it definitely needs to be set back on course again, particularly in Europe. The European Pressurised Reactor (EPR) that is supposed to be constructed in the UK may well get abandoned; EDF have not yet taken a final investment decision, and the EPRs being built in France and Finland are well over time and over budget. The latest in a long line of problems is that Areva have used the wrong type of steel at the EPR site in France, and the steel is already encased in concrete.

The EPR is a very complex design. Other existing nuclear reactor designs (so-called generation 3 or 3+) are less complex and need to be built, because they are proven, demonstrated and ready to go. However, more advanced designs must also be researched, developed and demonstrated. This should include both Integral Fast Reactors and Molten Salt Reactors (MSRs), the technology which Weinberg himself pioneered at Oak Ridge in the 1960s. MSRs have many potential benefits over current nuclear reactors:

* The plant can operate at near atmospheric pressure. The fuel salt used in MSRs has no chemical reactivity with air or water. So MSRs cannot explode.

* The liquid salt returns to a solid form at ambient temperatures. This, combined with installed passive safety systems, would automatically shut down advanced reactors avoiding future situations like  Fukushima and Chernobyl.

* Some advanced reactors could be fuelled by existing nuclear waste from conventional nuclear reactors. This ‘waste’ still contains over 90% of the energy that was in the uranium, so can be used many times as fuel. At the end of the process these advanced reactors would still produce some waste, but much less by volume than the waste produced by a conventional nuclear plant.

* Certain next-generation reactors can use plutonium as fuel. The UK has the world’s largest stockpile of plutonium, a result of two decades of reprocessing and failure to use mixed-oxide (Mox) fuel.

* Advanced reactors could be very fuel efficient – up to 75 times more electricity per ton of fuel than an out-dated conventional light-water reactor.

*Next generation reactors could be designed to be small and modular (producing up to 300 megawatts) which would suit power needs in remote locations. Compact versions of MSRs could be built in a central factory and assembled on site. This would reduce costs.

* Modular reactors could be constructed adjacent to industrial sites so that waste heat from the reactor could be used for heat-intensive processes such as desalination or the production of aluminium, cement, ammonia and synthesised fuels.

* Some advanced reactors are ideally suited to the sustainable production of medical isotopes, used for scans and to treat cancer. These isotopes are currently in short supply.

* Most next generation reactors would use approximately 97% less water than conventional nuclear reactors.

The Alvin Weinberg Foundation is committed to highlighting these benefits, to politicians and the public, and seeing the potential of advanced nuclear power realised. There are companies seeking to build prototype MSRs in the UK. If the EPR is abandoned, a sensible reaction by the new British government would be to support an advanced nuclear technology demonstration project in the UK.

Nuclear risk and regulation – time for a rethink?

Posted by Laurence Watson on February 6th, 2015

Nuclear fear – by Me2 on Flickr

Is nuclear over-regulated due to public fear and misconceptions of risks?

“Nuclear power seems to be being singled out for treatment that is not necessarily commensurate with the scale of risk. I say that because, in aggregate, as US climate scientist James Hansen often points out that nuclear has a massively beneficial impact on health in terms of lives saved from avoiding air pollution… There is a need for a public discourse about our perception of risk.”

- Baroness Worthington

Our patron, Baroness Worthington, recently brought up an important point in a debate in the House of Lords about  the formal regulatory process justifying consideration of the Advanced Boiling Water Reactor for deployment in the UK, which Hitachi-GE Nuclear Energy Ltd and Horizon Nuclear Power have proposed to construct at Wylfa and Oldbury. The regulatory justification is just part of the broad legal basis that needs to be covered when planning a new nuclear reactor.

Baroness Verma, the Parliamentary Under Secretary of State for Energy and Climate Change noted in reply that “the sector by its very nature is heavily regulated, and rightly so in order to build confidence”. But why does ionizing radiation receive such special treatment when it comes to assessing risk and if excessive regulation to build public confidence is slowing the development of nuclear power should we look at it again, especially in the context of the growing threats of climate change and air pollution?

Understanding relative doses

The EPR regulatory justification document (2010) describes some of the issues and factors at work when it comes to regulation around ionising radiation.

“The overall average annual dose to a member of the public from all sources of radioactivity is 2.7 millisieverts (a measure of dose and abbreviated as mSv) per year. Of this, about 84% is from natural sources, about 15% from medical procedures and about 1% from all other sources, including existing nuclear power stations….[exposure to radiation from these other sources] is limited to 1 mSv per year.”

“But the regulatory regime goes further than the legal 1 mSv limit. It requires operators to use BAT (Best Available Techniques) and ensure that the resulting exposures are below the statutory limits and as low as reasonably achievable (ALARA) [emphasis ours].

However, while the Health Protection Agency describes the increased risk of cancers from 1mSv as undetectable from background levels, the document goes on to say:

“The maximum occupational dose limit which applies to people at work is 20 mSv per year.”

So, while nuclear plants contribute a very small fraction of radiation exposure and are required to minimise this amount as far as is ‘reasonably’ possible, workers can be exposed to more than twenty times this amount. A chest CT scan will give you 6.6mSv. This great video on the most radioactive places around the world covers the workers and places most highly exposed – the very worst place might surprise you.

Wade Allison, Emeritus Professor of Physics at the University of Oxford writes in his book ‘Radiation and Reason’ that health risks from ionising radiation have been overestimated, and that the body does not have a linear response to ionising radiation.

The Linear No-Threshold (LNT) assessment of dosage to risk declares that as a certain dose of ionising radiation results in an increased chance cancer in a proportion of a population, this proportion will stay constant even if the dose becomes very small. If LNT is not correct for ionising radiation, then proceeding on the basis of ALARA (as low as reasonably achievable) is not an appropriate practice for regulation.

As Baroness Worthington pointed out, James Hansen among others has estimated the benefits of nuclear power from decreased air pollution, as well as avoided carbon emissions. Climate scientists have written en masse to call for more nuclear power. It is clear that in their minds the relatively small risks associated with nuclear power are vastly outweighed by the risks associated with continued dependence on unabated fossil fuels for our energy. It is therefore high time we had an informed public debate about these relative risks and looked again at the nuclear regulatory regime in light of our most recent understandings of risk.    

Fortunately Baroness Verma the Government’s Energy Minister in the Lords appears to agree with us as she ended the debate saying:

“I also agree that the discussions need to be much fuller and more informed, and of course I hope that we will take the opportunity to open that debate going forward…

I accept that what we do not want to do is single out a sector which is helping us to meet our carbon targets. We should not overly prescribe for one sector against others.”

So it appears that whichever party wins in the UK elections in May of this year it might herald the start of a debate about nuclear power, risk and regulation that is long overdue. We will be working hard to make sure that happens.

The recent film Pandora’s Promise does an excellent job of covering nuclear fear-mongering (if you haven’t seen it, it’s available on itunes and soon to be on Netflix). Many myths and scares have muddied the debate about realistic safety concerns.

Nuclear new build and the challenges of climate change

Posted by Laurence Watson on September 26th, 2014

The carbon budget, visualised - by Carbon Visuals from Flickr

The global carbon budget, visualised next to existing fossil fuel reserves- by Carbon Visuals from Flickr

This year the Intergovernmental Panel on Climate Change (IPCC) issued their 5th assessment of the science of climate change. The message was stark – there is near complete certainty in the scientific community that we are contributing to elevated levels of greenhouse gases in the atmosphere and that those higher concentrations are going to lead to higher global average temperatures threatening the stability of our climate.

Already we have witnessed an average increase of almost 1 degree, unevenly spread across the globe. For the first time this year, in attempting to explain the problem, the IPCC set out what it considers to be the limit for how much we can emit before we lose the chance of limiting average temperature increases to less than 2 degrees forever.

The IPCC expressed this limit as a total global carbon budget of 1 trillion tonnes of carbon. Since the industrial revolution we have used up around half of this budget, and at current global emissions rates we will use up the remainder before 2040. Reader, hopefully that is within your lifetime, but it is certainly well within the expected life time of our children. This means that within the next 25 years or so if we are to stay within these limits – and these only give a 50/50 chance of limiting warming to 2 degrees – we will have to have completely decarbonised our global energy system. 

This is a significant challenge, and one that requires us to urgently deploy substantial volumes of all known low carbon energy technologies and to rapidly develop the new ones that we know engineers can bring to market with sufficient incentives and support from policy makers.

Nuclear new build undoubtedly has an important role to play. However,  it is scarcely formally mentioned currently in climate discussions at an EU level and in the UN. Energy Ministers within many countries including the UK, China, and India agree that nuclear is needed going forward, but there is still a nervousness when it comes to international climate negotiations about expressly stating this.

The EU

In the EU, we know that this is partly the result of public opposition – especially in Germany and Austria where there are powerful anti nuclear lobbies. But encouragingly recently a group of 10 EU member states led by the Czech Republic wrote to the outgoing European Energy Commissioner to call for nuclear to be treated on a level playing with other low carbon technologies. A new Commission is in the process of being established and with Poland’s Prime Minister assuming the role of President of the European Council and a new Spanish Energy and Climate Commissioner we might see some changes. Certainly Poland was a signatory to the letter but sadly Spain was not.

The reason why we should look again at nuclear are clear. The EU’s electricity comes in at around 300g/kwh thanks to around 30% of its demand being met by nuclear and the two countries in the EU who have most rapidly decarbonised their economy are France and Sweden, both using substantial amounts of nuclear. Denmark and Germany on the other hand have so far had a more limited impact with their recent investment in renewables.

The UK with its ‘all of the above’ energy policy is looking to join France in reaching a carbon intensity of between 50-100g  CO2/kWh by 2030 but it will need to hold on to and expand its current nuclear capacity to do so.

The UK

The proposed reactor at Hinkley Point C is a vast project with a budget to match. 3.2 GW of clean power is almost certainly worth the wait – to match its output with wind would require, depending on assumptions around 3-6000 turbines – or expressed another way increasing by 75% the proposed 10GW target for offshore wind by 2020.

Depending on the outcome of this 3 way negotiation between EDF, the UK government and the European Commission, at least two other large scale projects are waiting in the wings with their proposals. If all go ahead as planned then we can expect to maintain our existing nuclear capacity.

But can we expand nuclear’s role? Can we use nuclear to help fully decarbonise electricity and then start to make in-roads in to emissions from transport and heat?

This is a key question – a lot depends on whether any progress can be made on reducing the costs of nuclear power – wind and solar may not be despatchable when we want them, but they have shown impressive abilities to reduce costs with deployment. There has been no such breakthrough in nuclear where, if anything, costs seem to rise inexorably over the years.

A new way

I remain convinced that were we to start with a blank sheet of paper to design the optimal civilian energy reactor we would be deploying very different reactors to those that we have come to equate with nuclear power today.

By focusing on maximising passive safety, eliminating risk of explosion through loss of coolant accidents and reducing the waste management problem, I am convinced we could arrive at a reactor that has a very different cost profile – and potentially also a much wider application: high temperature reactors for industrial applications may well prove to be a new and important market as the world seeks to fully decarbonise the economy.

Sadly over the last few decades R&D in nuclear fission has fallen away to almost nothing in the UK. Thanks to a House of Lords report which decried this situation in no uncertain terms, there has been something of a reversal of fortune but the sums involved are still so small as to be almost insignificant and there are lots of different views on how best to spend what little R&D money is being made available.

This situation saddens me and as a policy maker I believe we need to think again about how we can direct more money into nuclear fission R&D so that we can design nuclear reactors up to the challenges of the 21st century.  Perhaps then nuclear power can begin to take its rightful place in climate negotiations as a solution for rapidly decarbonising and providing access to clean energy for all.

- Baroness Bryony Worthington

Adapted from a speech given by Baroness Worthington to the UK Nuclear New Build Congress in September, 2014

Molten Salt Reactors in Highgate

Posted by Laurence Watson on September 25th, 2014

A view of Highgate by John Constable [Public domain] via Wikimedia Commons

A view of Highgate by John Constable [Public domain] via Wikimedia Commons

The Highgate Literary and Scientific Institution has been the cultural of heart of Highgate Village in north London since it was founded in 1839. It hosts lectures and events on literature, politics and… next-generation nuclear technology.

I was very pleased to represent The Alvin Weinberg Foundation and speak to members of the HLSI and the public about the possible futures for nuclear energy. This included an outline of our favoured design, the Molten Salt Reactor and its various benefits and differences with respect to current technology, as well as some discussion around thorium as a nuclear fuel.

The questions ranged from the more technical, such as how does one maintain criticality with a liquid fuel (answer – the same as with solid fuel, by the configuration of your fuel channels, or tubes such that there is enough nuclear material in one place to achieve criticality), to the amount of waste produced by a Molten Salt Reactor (answer – far less than with a conventional one!). As is often the case, many people by the end asked why, if all the benefits are true, we are not yet using these technologies?

The history of the MSR, the development of the nuclear industry, and subsequent dismantling of our research base provides some of the answers. The challenges to bring these concepts to market are large, but we have the capability to do it. The audience, I hope, were left with a new enthusiasm for a brighter future for nuclear energy and for the solutions needed to decarbonise our world as quickly as possible.

NuScale OnTruck ChenectedAichieOrg

Alternative nuclear rolled ahead a bit this week, as the U.S. DOE agreed to fund NuScale’s small modular reactor, transportable on the back of a truck.

The U.S. Department of Energy has taken another “small” step toward shaking the nuclear industry out of its uninventive ways and towards innovative reactors that augur lower costs and improved operations and safety for a low CO2 future: It has granted up to $226 million in funding to an Oregon startup that is developing a “small modular reactor.”

The award to Corvallis, Oregon-based NuScale Power marks the second tranche of a $452 million program that DOE announced in March 2012. It comes a year after DOE’s first grant to North Carolina-based Babcock & Wilcox. That grant was reported at up to $225 million at the time, although DOE told me today that it has so far committed $101 million to the five-year B&W project through March 2014 and that it is currently reviewing the release of additional funds.

“Small modular reactors represent a new generation of safe, reliable, low-carbon nuclear energy technology,” U.S. Energy Secretary Ernest Moniz said in announcing the award to NuScale. “The Energy Department is committed to strengthening nuclear energy’s continuing important role in America’s low carbon future.”


Like B&W, the NuScale design calls for a scaled-down conventional reactor, fueled by solid uranium, cooled by ordinary water and operated in a pressurized environment. By virtue of its smaller size, the NuScale “Integral Pressurized Water Reactor” (IPWR) portends lower costs because in principle it could be factory-built in more of an assembly line manner than could large conventional reactors; the idea is to ship them to a site via truck, rail or barge for final assembly. The “integral” design fits a reactor and a steam generator in an 80-foot by 15-foot cylinder.

The small size would also allow users such as utilities to purchase new reactors in less expensive increments rather than paying billions of dollars up front for conventionally sized reactors, which reach well over a gigawatt in electrical capacity. At 45 megawatts electric, the NuScale reactor provides about 3 percent the output of a 1.3-GW reactor. NuScale’s “modular” design permits up to 12 of the pressurized water reactors in a plant, for a total capacity of 540 MW.

NuScale, founded in 2007, has designed the IPWR to sit underground, thus protecting it from attack. The IPWR deploys a “passive cooling” system that would release a pool of water from above the reactor in the event of an emergency, rather than rely on pumps to circulate water (failed auxiliary electricity systems knocked out cooling at Japan’s Fukushima reactor, leading to meltdowns there).


NuScale partner Energy Northwest, a Richland, Wash. company that produces power for utilities, said that NuScale could develop a commercial six-to-12-reactor plant on the site of Idaho National Laboratory by 2024, which Energy Northwest would have the right to operate. Utah Associated Municipal Power Systems, a cooperative of government entities that pools electrical power resources, is also part of the scheme.

U.K. engineering stalwart Rolls Royce is also part of the NuScale small modular project. NuScale is majority owned by $27.6 billion engineering company Fluor Corp., based in Irving, Texas.

The presence of several companies in the NuScale project echoes the B&W small modular reactor venture which won the first tranche of DOE’s $452 million in SMR funding. B&W is working with U.S. construction firm Bechtel, and with federal power provider Tennessee Valley Authority. They hope to deploy four 180-MW reactors at TVA’s Clinch River, Tennessee site, via a joint venture called Generation mPower that is 90 percent owned by B&W and 10 percent by Bechtel.

That project took a peculiar turn recently, when B&W said it plans to sell 70 percent of its interest in mPower – including intellectual property.

A DOE spokeswoman said that DOE has so far committed $101 million to B&W through March, 2014. Possible further funding is currently under review, she said. B&W’s five-year federal funding period began in December, 2012. If DOE released more funds, the total would not exceed $226 million, the same five-year cap on the NuScale funding, which runs through Dec. 2018. In both cases, DOE would also be limited to funding no more than half of project costs, the spokeswoman said. She added that there will be no more grants under the $452 million Funding Opportunity Announcement (FOA).


While the DOE grant helps to push U.S. nuclear in a new direction of smaller and less expensive reactors, it stopped short of endorsing altogether new reactor designs that would support much higher operating temperatures.

These so-called “fourth generation reactors” include liquid fuel reactors known as molten salt reactors, as well as solid fuel reactors using “pebble bed” and “prismatic” fuel structures rather than conventional rods.  They would provide many additional advantages. For instance, they typically operate in unpressurized environments, which is a safety benefit over today’s pressurized reactors. They tend to leave less long-lived waste.

At higher temperatures they also generate electricity more efficiently, which lowers generating costs and would help nuclear compete in a market where natural gas prices are currently low. Unlike natural gas generation, nuclear power generation is carbon free, and the nuclear lifecycle is low-carbon.

And as Secretary Moniz himself noted last month, high temperature reactors could serve as sources of low-carbon heat for industrial processes and thus expand nuclear power beyond its role of generating electricity.

A number of high temperature reactor developers vied for the DOE award that went to NuScale, including San Diego’s General Atomics, and X-Energy Inc., a Greenbelt, Maryland-based company that is developing a pebble bed reactor based on older South Africa designs.

Stay tuned to the Weinberg site as we delve into some of these alternative reactor designs in our upcoming blog posts.

Photo is from NuScale via ChenectedAiche

Negotiations about Iran's nuclear plans

By U.S. Department of State from United States [Public domain], via Wikimedia Commons

The recent agreement between six world powers and Iran has, according to President Obama; “cut off Iran’s most likely paths to a bomb”The agreement includes many commitments to cease enrichment of uranium above concentrations of 5%, dismantling or halting construction of additional centrifuges and a pledge to not construct a reprocessing facility. Iran will continue to enrich uranium to concentrations of 3.5% to keep its stocks at a constant level as it is consumed in the civilian nuclear power program.  

However, much of the discussion about the deal has missed one key question: the extent to which we are made prisoners by the proliferation risks of existing fuel cycles. Could a programme of nuclear R&D, aimed at developing proliferation-resistant nuclear energy, prevent future nuclear crises?

What if we said that no enrichment facilities would be necessary if Iran was planning on producing nuclear energy with a thorium fuel cycle?

Thorium sits two places down the periodic table from uranium, and while very little of naturally occurring uranium is the U235 necessary for use in a reactor, almost all of naturally occurring thorium is Th232, which is the isotope suitable for use as a nuclear fuel. . Because of this, there is no need for any enrichment of thorium fuel and no need for centrifuges of any kind. The lack of any need for these facilities would certainly change the game in terms of detecting rogue nuclear programmes.

However, there is a “but”: thorium fuels need a “fissile driver” to provide the initial neutrons to start the thorium chain reaction. This can be uranium-233, uranium-235 or plutonium, although for anti-proliferation purposes we should certainly discount the last two.

So that leaves us with U233. Handily, uranium-233 is produced by thorium fuels in a reactor (in a thorium fuel cycle, it is actually uranium-233 that fissions). The rub is that the world has very little U233 available and if we want to develop proliferation-resistant fuel cycles, we’ll need a lot more of it. Currently the only way to make it is to kickstart thorium fuel with…U-235 or plutonium, and then reprocess it (although Accelerator-Driven Systems could help).

Proliferation resistance

While U233 is recognised as a proliferation risk by the IAEA, it is far less suitable for making weapons than highly enriched U235 or Pu239. Indeed, only two nuclear tests have involved U233; the USA’s ‘Operation Teapot’and one 0.2kt experimental design in India’s Pokran-II tests. No nuclear weapons in existence are made with U233. Sadly uranium-235 and plutonium have a well-proven track record of making functioning bombs.

U232 is produced in smaller amounts alongside the U233, which is a hard gamma ray emitter. This gives the material a strong and easily detectable radiation signature. The material has to be handled very carefully, and fuel fabrication for example has to be done remotely with sophisticated equipment. These increased difficulties have long been cited as  properties that would hinder weapons proliferation.

Hans Blix, the former head of the International Atomic Energy Agency has recently called for the development of nuclear energy from thorium, citing a lower risk of weapons proliferation from reactors as well as benefits including reduced waste. He wrote in the Guardian newspaper that the commitments were “constitute substantial bars to any bombmaking” without curtailing the civilian power program. I’m sure he would agree that if Iran was pursuing thorium-fuelled reactors, the barriers to a weapons program would be even higher.

Of course, how any future international thorium fuel programme would obtain and distribute the “fissile drivers” would be very sensitive, needing just the kind of increased transparency and oversight that has just been agreed. What is certain is that proven thorium fuels, started with U233, would give the international community new diplomatic options in future nuclear disputes.

The nuclear club is expanding

Thirty-one of the world’s countries currently use nuclear power to generate over 11% of global electricity. Over forty-five countries are considering embarking down the nuclear route, with the front-runners after Iran and UAE including Lithuania, Turkey and Belarus. It is important to stress that thorium is not a magic bullet to weapons proliferation– but it can be a part of the solution to future international proliferation disputes, alongside appropriate regulatory regimes and oversight mechanisms. Given the pressing need for low-carbon energy it seems only prudent to support a more proliferation-resistant route for nuclear energy.

The MegaTons to MegaWatts program which saw almost 20,000 Russian warheads dismantled and used as fuel in American nuclear power plants has recently come to an end, providing almost 10% of US electricity for 15 years. A similar amount of warheads remain in existence. In 1953, Eisenhower’s ‘Atoms for Peace’ speech carefully tried to open the eyes of the world to the positive benefits of nuclear energy, after the horrors of the nuclear bomb had become clear. He urged that “the miraculous inventiveness of man shall not be dedicated to his death, but consecrated to his life”. Perhaps it is time for that speech to be revisited, starting with a massive push to develop proliferation-resistant nuclear energy.

Cancel the Chattanooga Choo Choo. Assistant Energy Secretary Pete Lyons called off his trip to Tennessee's Oak Ridge National Laboratory when the government shut down last month. He's pictured here on an ORNL visit earlier this year, but not one relating to the advanced nuclear collaboration with China.

Cancel the Chattanooga Choo Choo. Assistant Energy Secretary Pete Lyons called off his trip to Tennessee’s Oak Ridge National Laboratory when the government shut down last month. He’s pictured here on an ORNL visit earlier this year, but not one relating to the advanced nuclear collaboration with China.

Those of you who object to the U.S. sharing advanced nuclear reactor designs with China might snigger at this news. Those of you who support the collaboration will find it dismaying: Last month’s U.S government shutdown forced the Department of Energy to cancel a rare high level meeting with China regarding the two nations’ ongoing partnership in molten salt reactor development.

But while the collaboration’s bosses failed to meet for the key appointment, the roster of U.S. contributors has been expanding to include additional universities and industrial members, such as Bill Gates’ nuclear company TerraPower.

According to people familiar with the situation, DOE Assistant Secretary Peter Lyons was due to travel to Tennessee’s Oak Ridge National Laboratory in October to meet with the project’s Chinese co-leader, presumably Jiang Mianheng. Lyons and Jiang were the two co-chairs of the collaboration when it began in Dec. 2011.

With the itineraries set and with sensitive travel visas in place for Jiang and his Chinese delegation, something happened on the way to Tennessee: The U.S. government closed its doors for two weeks when Congress failed to agree on general budgetary appropriations.

The shutdown took out all manner of government operations including national energy labs such as Oak Ridge (ORNL), where in the 1960s the U.S. built a molten salt reactor, the designs for which are part of the DOE/China advanced reactor partnership.

I’ve sent several emails to Lyons and to a DOE spokesperson asking whether Lyons and Jiang have rescheduled, but they have not replied. Around the time that DOE and the Chinese Academy of Sciences (CAS) entered the agreement in December, 2011, Jiang was the president of CAS’ Shanghai branch. He is the son of China’s former president, Jiang Zemin.


The two countries are sharing information related to a molten salt cooled, solid-fuel reactor that would safely operate at high temperatures and thus serve as a more efficient electricity generator than today’s “cooler” conventional reactors, and that would also serve as a valuable source of clean industrial heat, replacing fossil fuels. The reactors also portend safety, waste, and proliferation advantages over traditional nuclear.

China plans to build a prototype of a 2-megawatt “pebble bed” reactor by around 2015, and a 100-megawatt demonstrator by 2024.

It is also planning to build a reactor that is both cooled and fueled by liquid salts – a “molten salt reactor” (MSR). It plans a 10-MW prototype by 2024.  DOE has said that the collaboration only entails salt-cooled technologies, and is not specifically exploring MSRs, which many experts regard as a logical and superior next step after the development of a salt-cooled reactor.

Jiang has expressed intentions of using high temperature reactors not just to feed the grid with electricity – cleanly powering future fleets of electric cars –  but also to provide heat for processes like hydrogen production (he wants to then turn the hydrogen into methanol) for coal gasification, and to turn coal into products including olefin and diesel.

Earlier this month, U.S. Energy Secretary Ernest Moniz told a nuclear conference in Irvine, Calif. that the U.S. could have similar uses for high temperature reactors.

“Small modular reactors, especially high temperature ones, may have a particular role there essentially as heat sources,” Moniz told delegates at the Future of Advanced Nuclear Technologies gathering organized by the National Academy of Sciences and the Keck Futures Initiative. He outlined a number of possible applications, including “process heat, water desalination, hydrogen production, petroleum production and refining.”


Moniz told the conference that he recently traveled to China to help promote the Westinghouse AP1000, a conventional reactor with improved safety features, designed by Westinghouse, the U.S. subsidiary of Japan’s Toshiba. There are currently four AP1000s under construction in China, with more planned. Westinghouse and China are co-marketing AP1000 reactor technology beyond China.

At the Irvine gathering, Moniz did not mention the DOE/China high temperature reactor collaboration.

He also did not provide any details on how the U.S. might beef up its commitment to advanced reactor development; when I asked him, he would say only that he hopes to “marshall” resources. By comparison, China’s commitment is much more significant and multifaceted. It is backing the molten salt project at CAS  – just one of China’s several advanced reactor projects – with about $400 million, and hopes to produce a prototype as soon as 2015.

DOE has provided $7.5 million in funding to three universities – MIT, the University of California Berkeley, and the University of Wisconsin – for advanced reactor development, with a focus on molten salt cooled, solid fueled designs.  Those three universities plus ORNL were seminal members of the DOE/China collaboration, and Westinghouse has been advising them on how to eventually commercialize their technology.

Researchers from those entities and from China have met for four separate collaborative workshops over the last two years, my sources tell me. Those gatherings have not included chairmen Lyons and Jiang. A fifth workshop is planned for January, at UC Berkeley.


Meanwhile, the core group of workshop participants has grown to include TerraPower, the Seattle company chaired by Gates which has been widening its nuclear net.  TerraPower continues with its original mission to develop a fast reactor that it calls a traveling wave reactor, but has encountered a few technical snags and is now investigating other possibilities as well including molten salt reactors and thorium fuel.

Other new participants have included San Diego-based General Atomics which is developing a high temperature solid fuel, helium-cooled reactor that it calls the Energy Multiplier Module (EM2). From academia, the Georgia Institute of Technology, the University of Michigan, Ohio State University and the University of New Mexico have also joined the workshops.

General Atomics has submitted its EM2 as a candidate for the second tranche of DOE’s $452 million award for small modular reactors — reactors that are smaller than today’s gigawatt-plus behemoths and portend significant costs savings. Most advanced high temperature reactors are suitable for small modular form, with sizes ranging from around 30 MW to around 500. GA is competing against other high temperature reactor makers for the award, including X-Energy. Conventional temperature machines are also in the hunt, including one from Westhinghouse and another from Corvallis, Ore.-based NuScale.

A year ago DOE awarded the first tranche, of around $225 million, to Babcock & Wilcox for its mPower reactor, a scaled down version of an ordinary temperature conventional reactor. B&W announced earlier this month that it needs to sell a 70 percent stake in the joint venture company developing mPower in order to continue.

Photo is from U.S. government via Flickr

U.S. energy secretary: Deploy nuclear for industrial heat

Posted by Mark Halper on November 22nd, 2013

Moniz OakRidge Y12

Hot on nuclear. Secretary Moniz says that advanced reactors could furnish clean industrial heat. He also backs President Obama’s point that new and safer nuclear improves energy security and reduces proliferation risks. The Y12 sign in the background reminds us of the proliferation connection. Y12 is a defense related unit at DOE’s Oak Ridge facility, where Moniz spoke in this June photo.

IRVINE, CALIF. – The notion that nuclear reactors could provide clean, CO2-free heat for industrial process – and thus expand nuclear power’s role beyond electricity generation – got a big boost here when U.S. Energy Secretary Ernest Moniz endorsed the idea.

Speaking via a video link last Friday to a nuclear power and medicine conference, Moniz said that reactors currently under development – often called “advanced” or “fourth generation” reactors and typically small in size – could safely operate at much higher temperatures than conventional models and would be key to broadening nuclear’s role.

“Small modular reactors, especially high temperature ones, may have a particular role there essentially as heat sources,” Moniz told delegates at the Future of Advanced Nuclear Technologies gathering organized by the National Academy of Sciences and the Keck Futures Initiative. He outlined a number of possible applications, including “process heat, water desalination, hydrogen production, petroleum production and refining.”

At the moment, the U.S. lags behind at least one country, China, in supporting the development of advanced reactors such as molten salt and pebble bed reactors. Jiang Mianheng, who heads the development of molten salt reactors (MSRs) in China (Jiang is the son of China’s former president Jiang Zemin), has stated that China plans to use them for hydrogen production, gasifying coal, methanol manufacturing and other purposes. China recently released revised timelines for two of its high temperature reactors. It hopes to build a 2-megawatt pilot pebble bed by around 2015, and a 100-megawatt pebble bed demonstrator by 2024, among others.


Moniz’s remarks came as the U.S. Department of Energy prepares to select a winner for the second tranche of its total $452 million funding award for small modular reactors (SMRs). SMRs represent potential cost savings over large conventional reactors because manufacturers could build them in more of an assembly line fashion, and users could purchase modules in increments and thus reduce upfront capital costs.

Many SMR designs also support operations at temperatures ranging from around 600 degrees C to 900 degrees C, considerably higher than conventional reactors. A number of high temperature reactor developers are vying for the DOE award, including San Diego’s General Atomics. X-Energy Inc., a Greenbelt, Maryland-based company that is developing a pebble bed reactor based on older South Africa designs, is also believed to have submitted. So, reportedly, have a number of standard temperature SMR developers, including NuScale of Corvallis, Wash., and Westinghouse.

DOE granted its first round a year ago to Babcock & Wilcox for its mPower reactor, a scaled down version of a conventional reactor that does not operate at the high temperatures that could supply industrial heat. Days before Moniz presented at last week’s conference, Babcock announced that it wants to sell up to 70 percent of the company in order to continue building the SMR. The company is hoping to install four of the reactors at the Clinch River site in Tennessse, in partnership with construction and engineering giant Bechtel and with the Tennessee Valley Authority, a power provider.

The winner of round two won’t necessarily be a company developing a high temperature reactor.


Despite Moniz’s public endorsement for advanced reactors, the DOE trails China’s concerted efforts. Those include a two-year-old collaboration with three DOE-backed U.S. universities – the University of California Berkeley, the Massachusetts Institute of Technology and the University of Wisconsin –  in molten salt coolants for solid-fueled high temperature pebble bed reactors. DOE has provided the three universities with $7.5 million.

I asked Moniz after his presentation what measures DOE might take to step up its commitment to advanced reactors and bridge the gap with countries like China.

“I can’t say too much specifically,” he said. “But let’s just say we are trying to marshall some resources to increase our focus in that area.”

High temperature reactors provide other power benefits in addition to supporting industrial processes. For example, they support a more efficient electricity generating process, which cuts the cost of electricity.

And like all nuclear, high temperature reactors emit no CO2 during the generating process while having a very low CO2 footprint over the lifetime of a nuclear plant including mining fuel and constructing reactors.


Addressing nuclear in general, Moniz said that nuclear is “very clearly part of the solution set” in President Obama’s strategy to mitigate man-made climate change by shifting to low CO2 technologies.

“There is no one low carbon solution,” Moniz said, noting that nuclear is “not a silver bullet” but that “neither are any of the other technologies.”

Moniz cited a recent open letter by four renowned climate scientists calling for nuclear power to help stave off the ravages of man-made CO2 induced climate change. In that letter, signed by long time climate campaigner and Columbia University professor James Hansen among others, the scientists push for the deployment of new reactor types.

“I would argue that the discussion about whether we need to respond to climate change is largely over,” said Moniz, coming down squarely on the “respond” side.

The energy secretary also quoted Obama in urging continued development of nuclear energy for a multitude of reasons.

“When we enhance nuclear security, we’re in a stronger position to harness safe clean nuclear energy,” said Moniz, quoting from a speech that the president delivered at South Korea’s Hankuk University in March 2012, which continued, “When we develop new safer approaches to nuclear energy, we reduce the risk of nuclear terrorism and proliferation.”

That includes the development of advanced, high temperature reactors.

Photo is from Lynn Freeny, U.S. Government, via Flickr

Note: I’m in the midst of 10-day swing visiting various advanced nuclear initiatives up and down North America’s west coast. Stay tuned for more reports. – MH


James Hansen ArrestDC Tarsandsaction Wiki

James Hansen wants to arrest climate change by replacing fossil fuels with nuclear power. Above, a policeman handcuffs him outside the White House during a 2011 demonstration against TransCanada’s Keystone oil pipeline.

A group of four well-known climate scientists created a stir earlier this week with an open letter imploring environmentalists to back nuclear power as a low carbon energy source that can stave off the havoc of climate change.

With signatories including James Hansen, the Columbia University professor and longtime campaigner in the global warming fight,  the missive could put nuclear power firmly into the consciousness of this year’s United Nations Climate Change Conference kicking off in Warsaw on Nov. 11.

But what much of the general press missed in reporting on the clarion call was that the scientists were not simply advocating nuclear. They were pressing for  a move away from conventional nuclear technology – the uranium fueled, water cooled reactors of the last 50+ years – and toward alternative reactor types, such as those we write about here at Weinberg.

“We understand that today’s nuclear plants are far from perfect,” the letter stated. “Fortunately, passive safety systems and other advances can make new plants much safer. And modern nuclear technology can reduce proliferation risks and solve the waste disposal problem by burning current waste and using fuel more efficiently. Innovation and economies of scale can make new power plants even cheaper than existing plants.”

In addition to Hansen, who recently retired from over 30 years as head of NASA’s Goddard Institute of Space Studies, the authors included senior scientist Ken Caldeira of the Carnegie Institution for Science at Stanford University, atmospheric scientist Kerry Emanuel from MIT, and climate scientist Tom Wigley from Australia’s University of Adelaide.


For Hansen, alternative nuclear technology would include integral fast reactors (IFR) such as the PRISM reactor from GE-Hitachi which can burn plutonium and thus make use of existing nuclear “waste.” It can also breed fuel. Last year, Hansen, along with entrepreneur Richard Branson and GEH engineer Eric Loewen, wrote to U.S. President Barrack Obama encouraging support of IFRs (Loewen signed the letter in his then capacity as president of the American Nuclear Society).

Several other alternative reactor designs also augur improvement in safety, cost, efficiency, waste and weapons proliferation risks.

Those include molten salt reactors (MSRs), which deploy liquid fuel and which can operate safely at high temperatures and thus improve generating efficiencies and also serve as a clean heat source for high temperature industry processes that today rely on CO2-intense fossil fuels. MSRs also operate at atmospheric pressures rather than at potentially dangerous high pressure, and have a fail safe engineering that prevents meltdowns and and that allows fuel to drain harmlessly into a tank if necessary. They offer a number of other advantages, such as reduced waste and a potential to breed fuel.

Companies and countries developing MSRs include  China, Canada’s Terrestrial Energy, Japan’s Thorium Tech Solution, and Transatomic Power and Flibe Energy from the U.S., among others.

Other alternatives include another type of high temperature reactor called a “pebble bed reactor,” small modular reactors (which crosses many reactor types), and fusion.


The alternative reactor types – as well as conventional reactors – could also tap thorium fuel rather than uranium. Proponents of thorium point out that it is more plentiful than uranium, that it has a higher energy content,  and that it can reduce waste and proliferation risk, among other benefits. Thor Energy in Norway is currently conducting thorium tests in a conventional reactor. Scientists at the University of Cambridge and elsewhere believe that thorium could potentially be re-used over and over again in modified conventional reactors.

As I reported here recently from the Thorium Energy Conference 2013 in Geneva, thorium supporters include Nobel Prize winning physicist Carlo Rubbia and former chief UN weapons inspector Hans Blix. Conventional French nuclear giant Areva last week publicly stated that is investigating thorium possibilities.

This week’s letter by Hansen and his fellow climate scientist did not mention the alternative technologies by name, but issued a call “for the development and deployment of advanced nuclear energy.”

It said that “renewable” energy technologies such as wind and solar simply won’t be enough to avoid further serious consequences from global warming.


Many formerly anti-nuclear environmentalists have crossed over into the pro-nuclear camp, a theme conveyed in the feature length documentary film Pandora’s Promise. This week’s letter hopes to broaden that trend.

“We appreciate your organization’s concern about global warming, and your advocacy of renewable energy. But continued opposition to nuclear power threatens humanity’s ability to avoid dangerous climate change,” it said.

It further noted that, “Renewables like wind and solar and biomass will certainly play roles in a future energy economy, but those energy sources cannot scale up fast enough to deliver cheap and reliable power at the scale the global economy requires. While it may be theoretically possible to stabilize the climate without nuclear power, in the real world there is no credible path to climate stabilization that does not include a substantial role for nuclear power.”

It’s no coincidence that Hansen et al published the letter in the run-up to the two-week UN conference, where policy makers from around the world will attempt to agree on action to slow the effects of climate change. Often, these annual UN confabs – such as the 2009 Copenhagen installment – are remembered more for what they did not accomplish than anything else. Let’s see if Warsaw 2013 can at least leave some sort of positive nuclear impression.

For a full copy of the letter click here.

Photo is from Tarsandsaction via Wikimedia

© The Alvin Weinberg Foundation 2014
The Alvin Weinberg Foundation is a registered UK charity. Charity number: 1155255
The Alvin Weinberg Foundation web site uses cookies to record visitor patterns.
Read our data protection policy

Design by Tauri-tec Ltd and the Alvin Weinberg Foundation