Somerset House, Strand, London, WC2R 1LA

Follow us on:

The Alvin Weinberg Foundation is now a charity! Support us for a better nuclear future!

Archive for the ‘Safety’ Category

Nuclear new build and the challenges of climate change

Posted by Laurence Watson on September 26th, 2014

The carbon budget, visualised - by Carbon Visuals from Flickr

The global carbon budget, visualised next to existing fossil fuel reserves- by Carbon Visuals from Flickr

This year the Intergovernmental Panel on Climate Change (IPCC) issued their 5th assessment of the science of climate change. The message was stark – there is near complete certainty in the scientific community that we are contributing to elevated levels of greenhouse gases in the atmosphere and that those higher concentrations are going to lead to higher global average temperatures threatening the stability of our climate.

Already we have witnessed an average increase of almost 1 degree, unevenly spread across the globe. For the first time this year, in attempting to explain the problem, the IPCC set out what it considers to be the limit for how much we can emit before we lose the chance of limiting average temperature increases to less than 2 degrees forever.

The IPCC expressed this limit as a total global carbon budget of 1 trillion tonnes of carbon. Since the industrial revolution we have used up around half of this budget, and at current global emissions rates we will use up the remainder before 2040. Reader, hopefully that is within your lifetime, but it is certainly well within the expected life time of our children. This means that within the next 25 years or so if we are to stay within these limits – and these only give a 50/50 chance of limiting warming to 2 degrees – we will have to have completely decarbonised our global energy system. 

This is a significant challenge, and one that requires us to urgently deploy substantial volumes of all known low carbon energy technologies and to rapidly develop the new ones that we know engineers can bring to market with sufficient incentives and support from policy makers.

Nuclear new build undoubtedly has an important role to play. However,  it is scarcely formally mentioned currently in climate discussions at an EU level and in the UN. Energy Ministers within many countries including the UK, China, and India agree that nuclear is needed going forward, but there is still a nervousness when it comes to international climate negotiations about expressly stating this.

The EU

In the EU, we know that this is partly the result of public opposition – especially in Germany and Austria where there are powerful anti nuclear lobbies. But encouragingly recently a group of 10 EU member states led by the Czech Republic wrote to the outgoing European Energy Commissioner to call for nuclear to be treated on a level playing with other low carbon technologies. A new Commission is in the process of being established and with Poland’s Prime Minister assuming the role of President of the European Council and a new Spanish Energy and Climate Commissioner we might see some changes. Certainly Poland was a signatory to the letter but sadly Spain was not.

The reason why we should look again at nuclear are clear. The EU’s electricity comes in at around 300g/kwh thanks to around 30% of its demand being met by nuclear and the two countries in the EU who have most rapidly decarbonised their economy are France and Sweden, both using substantial amounts of nuclear. Denmark and Germany on the other hand have so far had a more limited impact with their recent investment in renewables.

The UK with its ‘all of the above’ energy policy is looking to join France in reaching a carbon intensity of between 50-100g  CO2/kWh by 2030 but it will need to hold on to and expand its current nuclear capacity to do so.

The UK

The proposed reactor at Hinkley Point C is a vast project with a budget to match. 3.2 GW of clean power is almost certainly worth the wait – to match its output with wind would require, depending on assumptions around 3-6000 turbines – or expressed another way increasing by 75% the proposed 10GW target for offshore wind by 2020.

Depending on the outcome of this 3 way negotiation between EDF, the UK government and the European Commission, at least two other large scale projects are waiting in the wings with their proposals. If all go ahead as planned then we can expect to maintain our existing nuclear capacity.

But can we expand nuclear’s role? Can we use nuclear to help fully decarbonise electricity and then start to make in-roads in to emissions from transport and heat?

This is a key question – a lot depends on whether any progress can be made on reducing the costs of nuclear power – wind and solar may not be despatchable when we want them, but they have shown impressive abilities to reduce costs with deployment. There has been no such breakthrough in nuclear where, if anything, costs seem to rise inexorably over the years.

A new way

I remain convinced that were we to start with a blank sheet of paper to design the optimal civilian energy reactor we would be deploying very different reactors to those that we have come to equate with nuclear power today.

By focusing on maximising passive safety, eliminating risk of explosion through loss of coolant accidents and reducing the waste management problem, I am convinced we could arrive at a reactor that has a very different cost profile – and potentially also a much wider application: high temperature reactors for industrial applications may well prove to be a new and important market as the world seeks to fully decarbonise the economy.

Sadly over the last few decades R&D in nuclear fission has fallen away to almost nothing in the UK. Thanks to a House of Lords report which decried this situation in no uncertain terms, there has been something of a reversal of fortune but the sums involved are still so small as to be almost insignificant and there are lots of different views on how best to spend what little R&D money is being made available.

This situation saddens me and as a policy maker I believe we need to think again about how we can direct more money into nuclear fission R&D so that we can design nuclear reactors up to the challenges of the 21st century.  Perhaps then nuclear power can begin to take its rightful place in climate negotiations as a solution for rapidly decarbonising and providing access to clean energy for all.

- Baroness Bryony Worthington

Adapted from a speech given by Baroness Worthington to the UK Nuclear New Build Congress in September, 2014

Molten Salt Reactors in Highgate

Posted by Laurence Watson on September 25th, 2014

A view of Highgate by John Constable [Public domain] via Wikimedia Commons

A view of Highgate by John Constable [Public domain] via Wikimedia Commons

The Highgate Literary and Scientific Institution has been the cultural of heart of Highgate Village in north London since it was founded in 1839. It hosts lectures and events on literature, politics and… next-generation nuclear technology.

I was very pleased to represent The Alvin Weinberg Foundation and speak to members of the HLSI and the public about the possible futures for nuclear energy. This included an outline of our favoured design, the Molten Salt Reactor and its various benefits and differences with respect to current technology, as well as some discussion around thorium as a nuclear fuel.

The questions ranged from the more technical, such as how does one maintain criticality with a liquid fuel (answer – the same as with solid fuel, by the configuration of your fuel channels, or tubes such that there is enough nuclear material in one place to achieve criticality), to the amount of waste produced by a Molten Salt Reactor (answer – far less than with a conventional one!). As is often the case, many people by the end asked why, if all the benefits are true, we are not yet using these technologies?

The history of the MSR, the development of the nuclear industry, and subsequent dismantling of our research base provides some of the answers. The challenges to bring these concepts to market are large, but we have the capability to do it. The audience, I hope, were left with a new enthusiasm for a brighter future for nuclear energy and for the solutions needed to decarbonise our world as quickly as possible.

NuScale OnTruck ChenectedAichieOrg

Alternative nuclear rolled ahead a bit this week, as the U.S. DOE agreed to fund NuScale’s small modular reactor, transportable on the back of a truck.

The U.S. Department of Energy has taken another “small” step toward shaking the nuclear industry out of its uninventive ways and towards innovative reactors that augur lower costs and improved operations and safety for a low CO2 future: It has granted up to $226 million in funding to an Oregon startup that is developing a “small modular reactor.”

The award to Corvallis, Oregon-based NuScale Power marks the second tranche of a $452 million program that DOE announced in March 2012. It comes a year after DOE’s first grant to North Carolina-based Babcock & Wilcox. That grant was reported at up to $225 million at the time, although DOE told me today that it has so far committed $101 million to the five-year B&W project through March 2014 and that it is currently reviewing the release of additional funds.

“Small modular reactors represent a new generation of safe, reliable, low-carbon nuclear energy technology,” U.S. Energy Secretary Ernest Moniz said in announcing the award to NuScale. “The Energy Department is committed to strengthening nuclear energy’s continuing important role in America’s low carbon future.”

SHRINKING CONVENTION

Like B&W, the NuScale design calls for a scaled-down conventional reactor, fueled by solid uranium, cooled by ordinary water and operated in a pressurized environment. By virtue of its smaller size, the NuScale “Integral Pressurized Water Reactor” (IPWR) portends lower costs because in principle it could be factory-built in more of an assembly line manner than could large conventional reactors; the idea is to ship them to a site via truck, rail or barge for final assembly. The “integral” design fits a reactor and a steam generator in an 80-foot by 15-foot cylinder.

The small size would also allow users such as utilities to purchase new reactors in less expensive increments rather than paying billions of dollars up front for conventionally sized reactors, which reach well over a gigawatt in electrical capacity. At 45 megawatts electric, the NuScale reactor provides about 3 percent the output of a 1.3-GW reactor. NuScale’s “modular” design permits up to 12 of the pressurized water reactors in a plant, for a total capacity of 540 MW.

NuScale, founded in 2007, has designed the IPWR to sit underground, thus protecting it from attack. The IPWR deploys a “passive cooling” system that would release a pool of water from above the reactor in the event of an emergency, rather than rely on pumps to circulate water (failed auxiliary electricity systems knocked out cooling at Japan’s Fukushima reactor, leading to meltdowns there).

EYEING IDAHO

NuScale partner Energy Northwest, a Richland, Wash. company that produces power for utilities, said that NuScale could develop a commercial six-to-12-reactor plant on the site of Idaho National Laboratory by 2024, which Energy Northwest would have the right to operate. Utah Associated Municipal Power Systems, a cooperative of government entities that pools electrical power resources, is also part of the scheme.

U.K. engineering stalwart Rolls Royce is also part of the NuScale small modular project. NuScale is majority owned by $27.6 billion engineering company Fluor Corp., based in Irving, Texas.

The presence of several companies in the NuScale project echoes the B&W small modular reactor venture which won the first tranche of DOE’s $452 million in SMR funding. B&W is working with U.S. construction firm Bechtel, and with federal power provider Tennessee Valley Authority. They hope to deploy four 180-MW reactors at TVA’s Clinch River, Tennessee site, via a joint venture called Generation mPower that is 90 percent owned by B&W and 10 percent by Bechtel.

That project took a peculiar turn recently, when B&W said it plans to sell 70 percent of its interest in mPower – including intellectual property.

A DOE spokeswoman said that DOE has so far committed $101 million to B&W through March, 2014. Possible further funding is currently under review, she said. B&W’s five-year federal funding period began in December, 2012. If DOE released more funds, the total would not exceed $226 million, the same five-year cap on the NuScale funding, which runs through Dec. 2018. In both cases, DOE would also be limited to funding no more than half of project costs, the spokeswoman said. She added that there will be no more grants under the $452 million Funding Opportunity Announcement (FOA).

CAN’T TAKE THE HEAT

While the DOE grant helps to push U.S. nuclear in a new direction of smaller and less expensive reactors, it stopped short of endorsing altogether new reactor designs that would support much higher operating temperatures.

These so-called “fourth generation reactors” include liquid fuel reactors known as molten salt reactors, as well as solid fuel reactors using “pebble bed” and “prismatic” fuel structures rather than conventional rods.  They would provide many additional advantages. For instance, they typically operate in unpressurized environments, which is a safety benefit over today’s pressurized reactors. They tend to leave less long-lived waste.

At higher temperatures they also generate electricity more efficiently, which lowers generating costs and would help nuclear compete in a market where natural gas prices are currently low. Unlike natural gas generation, nuclear power generation is carbon free, and the nuclear lifecycle is low-carbon.

And as Secretary Moniz himself noted last month, high temperature reactors could serve as sources of low-carbon heat for industrial processes and thus expand nuclear power beyond its role of generating electricity.

A number of high temperature reactor developers vied for the DOE award that went to NuScale, including San Diego’s General Atomics, and X-Energy Inc., a Greenbelt, Maryland-based company that is developing a pebble bed reactor based on older South Africa designs.

Stay tuned to the Weinberg site as we delve into some of these alternative reactor designs in our upcoming blog posts.

Photo is from NuScale via ChenectedAiche

Negotiations about Iran's nuclear plans

By U.S. Department of State from United States [Public domain], via Wikimedia Commons

The recent agreement between six world powers and Iran has, according to President Obama; “cut off Iran’s most likely paths to a bomb”The agreement includes many commitments to cease enrichment of uranium above concentrations of 5%, dismantling or halting construction of additional centrifuges and a pledge to not construct a reprocessing facility. Iran will continue to enrich uranium to concentrations of 3.5% to keep its stocks at a constant level as it is consumed in the civilian nuclear power program.  

However, much of the discussion about the deal has missed one key question: the extent to which we are made prisoners by the proliferation risks of existing fuel cycles. Could a programme of nuclear R&D, aimed at developing proliferation-resistant nuclear energy, prevent future nuclear crises?

What if we said that no enrichment facilities would be necessary if Iran was planning on producing nuclear energy with a thorium fuel cycle?

Thorium sits two places down the periodic table from uranium, and while very little of naturally occurring uranium is the U235 necessary for use in a reactor, almost all of naturally occurring thorium is Th232, which is the isotope suitable for use as a nuclear fuel. . Because of this, there is no need for any enrichment of thorium fuel and no need for centrifuges of any kind. The lack of any need for these facilities would certainly change the game in terms of detecting rogue nuclear programmes.

However, there is a “but”: thorium fuels need a “fissile driver” to provide the initial neutrons to start the thorium chain reaction. This can be uranium-233, uranium-235 or plutonium, although for anti-proliferation purposes we should certainly discount the last two.

So that leaves us with U233. Handily, uranium-233 is produced by thorium fuels in a reactor (in a thorium fuel cycle, it is actually uranium-233 that fissions). The rub is that the world has very little U233 available and if we want to develop proliferation-resistant fuel cycles, we’ll need a lot more of it. Currently the only way to make it is to kickstart thorium fuel with…U-235 or plutonium, and then reprocess it (although Accelerator-Driven Systems could help).

Proliferation resistance

While U233 is recognised as a proliferation risk by the IAEA, it is far less suitable for making weapons than highly enriched U235 or Pu239. Indeed, only two nuclear tests have involved U233; the USA’s ‘Operation Teapot’and one 0.2kt experimental design in India’s Pokran-II tests. No nuclear weapons in existence are made with U233. Sadly uranium-235 and plutonium have a well-proven track record of making functioning bombs.

U232 is produced in smaller amounts alongside the U233, which is a hard gamma ray emitter. This gives the material a strong and easily detectable radiation signature. The material has to be handled very carefully, and fuel fabrication for example has to be done remotely with sophisticated equipment. These increased difficulties have long been cited as  properties that would hinder weapons proliferation.

Hans Blix, the former head of the International Atomic Energy Agency has recently called for the development of nuclear energy from thorium, citing a lower risk of weapons proliferation from reactors as well as benefits including reduced waste. He wrote in the Guardian newspaper that the commitments were “constitute substantial bars to any bombmaking” without curtailing the civilian power program. I’m sure he would agree that if Iran was pursuing thorium-fuelled reactors, the barriers to a weapons program would be even higher.

Of course, how any future international thorium fuel programme would obtain and distribute the “fissile drivers” would be very sensitive, needing just the kind of increased transparency and oversight that has just been agreed. What is certain is that proven thorium fuels, started with U233, would give the international community new diplomatic options in future nuclear disputes.

The nuclear club is expanding

Thirty-one of the world’s countries currently use nuclear power to generate over 11% of global electricity. Over forty-five countries are considering embarking down the nuclear route, with the front-runners after Iran and UAE including Lithuania, Turkey and Belarus. It is important to stress that thorium is not a magic bullet to weapons proliferation– but it can be a part of the solution to future international proliferation disputes, alongside appropriate regulatory regimes and oversight mechanisms. Given the pressing need for low-carbon energy it seems only prudent to support a more proliferation-resistant route for nuclear energy.

The MegaTons to MegaWatts program which saw almost 20,000 Russian warheads dismantled and used as fuel in American nuclear power plants has recently come to an end, providing almost 10% of US electricity for 15 years. A similar amount of warheads remain in existence. In 1953, Eisenhower’s ‘Atoms for Peace’ speech carefully tried to open the eyes of the world to the positive benefits of nuclear energy, after the horrors of the nuclear bomb had become clear. He urged that “the miraculous inventiveness of man shall not be dedicated to his death, but consecrated to his life”. Perhaps it is time for that speech to be revisited, starting with a massive push to develop proliferation-resistant nuclear energy.

Cancel the Chattanooga Choo Choo. Assistant Energy Secretary Pete Lyons called off his trip to Tennessee's Oak Ridge National Laboratory when the government shut down last month. He's pictured here on an ORNL visit earlier this year, but not one relating to the advanced nuclear collaboration with China.

Cancel the Chattanooga Choo Choo. Assistant Energy Secretary Pete Lyons called off his trip to Tennessee’s Oak Ridge National Laboratory when the government shut down last month. He’s pictured here on an ORNL visit earlier this year, but not one relating to the advanced nuclear collaboration with China.

Those of you who object to the U.S. sharing advanced nuclear reactor designs with China might snigger at this news. Those of you who support the collaboration will find it dismaying: Last month’s U.S government shutdown forced the Department of Energy to cancel a rare high level meeting with China regarding the two nations’ ongoing partnership in molten salt reactor development.

But while the collaboration’s bosses failed to meet for the key appointment, the roster of U.S. contributors has been expanding to include additional universities and industrial members, such as Bill Gates’ nuclear company TerraPower.

According to people familiar with the situation, DOE Assistant Secretary Peter Lyons was due to travel to Tennessee’s Oak Ridge National Laboratory in October to meet with the project’s Chinese co-leader, presumably Jiang Mianheng. Lyons and Jiang were the two co-chairs of the collaboration when it began in Dec. 2011.

With the itineraries set and with sensitive travel visas in place for Jiang and his Chinese delegation, something happened on the way to Tennessee: The U.S. government closed its doors for two weeks when Congress failed to agree on general budgetary appropriations.

The shutdown took out all manner of government operations including national energy labs such as Oak Ridge (ORNL), where in the 1960s the U.S. built a molten salt reactor, the designs for which are part of the DOE/China advanced reactor partnership.

I’ve sent several emails to Lyons and to a DOE spokesperson asking whether Lyons and Jiang have rescheduled, but they have not replied. Around the time that DOE and the Chinese Academy of Sciences (CAS) entered the agreement in December, 2011, Jiang was the president of CAS’ Shanghai branch. He is the son of China’s former president, Jiang Zemin.

PASSING THE SALT

The two countries are sharing information related to a molten salt cooled, solid-fuel reactor that would safely operate at high temperatures and thus serve as a more efficient electricity generator than today’s “cooler” conventional reactors, and that would also serve as a valuable source of clean industrial heat, replacing fossil fuels. The reactors also portend safety, waste, and proliferation advantages over traditional nuclear.

China plans to build a prototype of a 2-megawatt “pebble bed” reactor by around 2015, and a 100-megawatt demonstrator by 2024.

It is also planning to build a reactor that is both cooled and fueled by liquid salts – a “molten salt reactor” (MSR). It plans a 10-MW prototype by 2024.  DOE has said that the collaboration only entails salt-cooled technologies, and is not specifically exploring MSRs, which many experts regard as a logical and superior next step after the development of a salt-cooled reactor.

Jiang has expressed intentions of using high temperature reactors not just to feed the grid with electricity – cleanly powering future fleets of electric cars –  but also to provide heat for processes like hydrogen production (he wants to then turn the hydrogen into methanol) for coal gasification, and to turn coal into products including olefin and diesel.

Earlier this month, U.S. Energy Secretary Ernest Moniz told a nuclear conference in Irvine, Calif. that the U.S. could have similar uses for high temperature reactors.

“Small modular reactors, especially high temperature ones, may have a particular role there essentially as heat sources,” Moniz told delegates at the Future of Advanced Nuclear Technologies gathering organized by the National Academy of Sciences and the Keck Futures Initiative. He outlined a number of possible applications, including “process heat, water desalination, hydrogen production, petroleum production and refining.”

CONVENTIONAL WISDOM

Moniz told the conference that he recently traveled to China to help promote the Westinghouse AP1000, a conventional reactor with improved safety features, designed by Westinghouse, the U.S. subsidiary of Japan’s Toshiba. There are currently four AP1000s under construction in China, with more planned. Westinghouse and China are co-marketing AP1000 reactor technology beyond China.

At the Irvine gathering, Moniz did not mention the DOE/China high temperature reactor collaboration.

He also did not provide any details on how the U.S. might beef up its commitment to advanced reactor development; when I asked him, he would say only that he hopes to “marshall” resources. By comparison, China’s commitment is much more significant and multifaceted. It is backing the molten salt project at CAS  – just one of China’s several advanced reactor projects – with about $400 million, and hopes to produce a prototype as soon as 2015.

DOE has provided $7.5 million in funding to three universities – MIT, the University of California Berkeley, and the University of Wisconsin – for advanced reactor development, with a focus on molten salt cooled, solid fueled designs.  Those three universities plus ORNL were seminal members of the DOE/China collaboration, and Westinghouse has been advising them on how to eventually commercialize their technology.

Researchers from those entities and from China have met for four separate collaborative workshops over the last two years, my sources tell me. Those gatherings have not included chairmen Lyons and Jiang. A fifth workshop is planned for January, at UC Berkeley.

OPENING THE GATES

Meanwhile, the core group of workshop participants has grown to include TerraPower, the Seattle company chaired by Gates which has been widening its nuclear net.  TerraPower continues with its original mission to develop a fast reactor that it calls a traveling wave reactor, but has encountered a few technical snags and is now investigating other possibilities as well including molten salt reactors and thorium fuel.

Other new participants have included San Diego-based General Atomics which is developing a high temperature solid fuel, helium-cooled reactor that it calls the Energy Multiplier Module (EM2). From academia, the Georgia Institute of Technology, the University of Michigan, Ohio State University and the University of New Mexico have also joined the workshops.

General Atomics has submitted its EM2 as a candidate for the second tranche of DOE’s $452 million award for small modular reactors — reactors that are smaller than today’s gigawatt-plus behemoths and portend significant costs savings. Most advanced high temperature reactors are suitable for small modular form, with sizes ranging from around 30 MW to around 500. GA is competing against other high temperature reactor makers for the award, including X-Energy. Conventional temperature machines are also in the hunt, including one from Westhinghouse and another from Corvallis, Ore.-based NuScale.

A year ago DOE awarded the first tranche, of around $225 million, to Babcock & Wilcox for its mPower reactor, a scaled down version of an ordinary temperature conventional reactor. B&W announced earlier this month that it needs to sell a 70 percent stake in the joint venture company developing mPower in order to continue.

Photo is from U.S. government via Flickr

U.S. energy secretary: Deploy nuclear for industrial heat

Posted by Mark Halper on November 22nd, 2013

Moniz OakRidge Y12

Hot on nuclear. Secretary Moniz says that advanced reactors could furnish clean industrial heat. He also backs President Obama’s point that new and safer nuclear improves energy security and reduces proliferation risks. The Y12 sign in the background reminds us of the proliferation connection. Y12 is a defense related unit at DOE’s Oak Ridge facility, where Moniz spoke in this June photo.

IRVINE, CALIF. – The notion that nuclear reactors could provide clean, CO2-free heat for industrial process – and thus expand nuclear power’s role beyond electricity generation – got a big boost here when U.S. Energy Secretary Ernest Moniz endorsed the idea.

Speaking via a video link last Friday to a nuclear power and medicine conference, Moniz said that reactors currently under development – often called “advanced” or “fourth generation” reactors and typically small in size – could safely operate at much higher temperatures than conventional models and would be key to broadening nuclear’s role.

“Small modular reactors, especially high temperature ones, may have a particular role there essentially as heat sources,” Moniz told delegates at the Future of Advanced Nuclear Technologies gathering organized by the National Academy of Sciences and the Keck Futures Initiative. He outlined a number of possible applications, including “process heat, water desalination, hydrogen production, petroleum production and refining.”

At the moment, the U.S. lags behind at least one country, China, in supporting the development of advanced reactors such as molten salt and pebble bed reactors. Jiang Mianheng, who heads the development of molten salt reactors (MSRs) in China (Jiang is the son of China’s former president Jiang Zemin), has stated that China plans to use them for hydrogen production, gasifying coal, methanol manufacturing and other purposes. China recently released revised timelines for two of its high temperature reactors. It hopes to build a 2-megawatt pilot pebble bed by around 2015, and a 100-megawatt pebble bed demonstrator by 2024, among others.

SMALL HANDOUTS

Moniz’s remarks came as the U.S. Department of Energy prepares to select a winner for the second tranche of its total $452 million funding award for small modular reactors (SMRs). SMRs represent potential cost savings over large conventional reactors because manufacturers could build them in more of an assembly line fashion, and users could purchase modules in increments and thus reduce upfront capital costs.

Many SMR designs also support operations at temperatures ranging from around 600 degrees C to 900 degrees C, considerably higher than conventional reactors. A number of high temperature reactor developers are vying for the DOE award, including San Diego’s General Atomics. X-Energy Inc., a Greenbelt, Maryland-based company that is developing a pebble bed reactor based on older South Africa designs, is also believed to have submitted. So, reportedly, have a number of standard temperature SMR developers, including NuScale of Corvallis, Wash., and Westinghouse.

DOE granted its first round a year ago to Babcock & Wilcox for its mPower reactor, a scaled down version of a conventional reactor that does not operate at the high temperatures that could supply industrial heat. Days before Moniz presented at last week’s conference, Babcock announced that it wants to sell up to 70 percent of the company in order to continue building the SMR. The company is hoping to install four of the reactors at the Clinch River site in Tennessse, in partnership with construction and engineering giant Bechtel and with the Tennessee Valley Authority, a power provider.

The winner of round two won’t necessarily be a company developing a high temperature reactor.

CHASING CHINA

Despite Moniz’s public endorsement for advanced reactors, the DOE trails China’s concerted efforts. Those include a two-year-old collaboration with three DOE-backed U.S. universities – the University of California Berkeley, the Massachusetts Institute of Technology and the University of Wisconsin –  in molten salt coolants for solid-fueled high temperature pebble bed reactors. DOE has provided the three universities with $7.5 million.

I asked Moniz after his presentation what measures DOE might take to step up its commitment to advanced reactors and bridge the gap with countries like China.

“I can’t say too much specifically,” he said. “But let’s just say we are trying to marshall some resources to increase our focus in that area.”

High temperature reactors provide other power benefits in addition to supporting industrial processes. For example, they support a more efficient electricity generating process, which cuts the cost of electricity.

And like all nuclear, high temperature reactors emit no CO2 during the generating process while having a very low CO2 footprint over the lifetime of a nuclear plant including mining fuel and constructing reactors.

OBAMA’S BACKING

Addressing nuclear in general, Moniz said that nuclear is “very clearly part of the solution set” in President Obama’s strategy to mitigate man-made climate change by shifting to low CO2 technologies.

“There is no one low carbon solution,” Moniz said, noting that nuclear is “not a silver bullet” but that “neither are any of the other technologies.”

Moniz cited a recent open letter by four renowned climate scientists calling for nuclear power to help stave off the ravages of man-made CO2 induced climate change. In that letter, signed by long time climate campaigner and Columbia University professor James Hansen among others, the scientists push for the deployment of new reactor types.

“I would argue that the discussion about whether we need to respond to climate change is largely over,” said Moniz, coming down squarely on the “respond” side.

The energy secretary also quoted Obama in urging continued development of nuclear energy for a multitude of reasons.

“When we enhance nuclear security, we’re in a stronger position to harness safe clean nuclear energy,” said Moniz, quoting from a speech that the president delivered at South Korea’s Hankuk University in March 2012, which continued, “When we develop new safer approaches to nuclear energy, we reduce the risk of nuclear terrorism and proliferation.”

That includes the development of advanced, high temperature reactors.

Photo is from Lynn Freeny, U.S. Government, via Flickr

Note: I’m in the midst of 10-day swing visiting various advanced nuclear initiatives up and down North America’s west coast. Stay tuned for more reports. – MH

 

James Hansen ArrestDC Tarsandsaction Wiki

James Hansen wants to arrest climate change by replacing fossil fuels with nuclear power. Above, a policeman handcuffs him outside the White House during a 2011 demonstration against TransCanada’s Keystone oil pipeline.

A group of four well-known climate scientists created a stir earlier this week with an open letter imploring environmentalists to back nuclear power as a low carbon energy source that can stave off the havoc of climate change.

With signatories including James Hansen, the Columbia University professor and longtime campaigner in the global warming fight,  the missive could put nuclear power firmly into the consciousness of this year’s United Nations Climate Change Conference kicking off in Warsaw on Nov. 11.

But what much of the general press missed in reporting on the clarion call was that the scientists were not simply advocating nuclear. They were pressing for  a move away from conventional nuclear technology – the uranium fueled, water cooled reactors of the last 50+ years – and toward alternative reactor types, such as those we write about here at Weinberg.

“We understand that today’s nuclear plants are far from perfect,” the letter stated. “Fortunately, passive safety systems and other advances can make new plants much safer. And modern nuclear technology can reduce proliferation risks and solve the waste disposal problem by burning current waste and using fuel more efficiently. Innovation and economies of scale can make new power plants even cheaper than existing plants.”

In addition to Hansen, who recently retired from over 30 years as head of NASA’s Goddard Institute of Space Studies, the authors included senior scientist Ken Caldeira of the Carnegie Institution for Science at Stanford University, atmospheric scientist Kerry Emanuel from MIT, and climate scientist Tom Wigley from Australia’s University of Adelaide.

REACTOR OPTIONS

For Hansen, alternative nuclear technology would include integral fast reactors (IFR) such as the PRISM reactor from GE-Hitachi which can burn plutonium and thus make use of existing nuclear “waste.” It can also breed fuel. Last year, Hansen, along with entrepreneur Richard Branson and GEH engineer Eric Loewen, wrote to U.S. President Barrack Obama encouraging support of IFRs (Loewen signed the letter in his then capacity as president of the American Nuclear Society).

Several other alternative reactor designs also augur improvement in safety, cost, efficiency, waste and weapons proliferation risks.

Those include molten salt reactors (MSRs), which deploy liquid fuel and which can operate safely at high temperatures and thus improve generating efficiencies and also serve as a clean heat source for high temperature industry processes that today rely on CO2-intense fossil fuels. MSRs also operate at atmospheric pressures rather than at potentially dangerous high pressure, and have a fail safe engineering that prevents meltdowns and and that allows fuel to drain harmlessly into a tank if necessary. They offer a number of other advantages, such as reduced waste and a potential to breed fuel.

Companies and countries developing MSRs include  China, Canada’s Terrestrial Energy, Japan’s Thorium Tech Solution, and Transatomic Power and Flibe Energy from the U.S., among others.

Other alternatives include another type of high temperature reactor called a “pebble bed reactor,” small modular reactors (which crosses many reactor types), and fusion.

THORIUM TOO

The alternative reactor types – as well as conventional reactors – could also tap thorium fuel rather than uranium. Proponents of thorium point out that it is more plentiful than uranium, that it has a higher energy content,  and that it can reduce waste and proliferation risk, among other benefits. Thor Energy in Norway is currently conducting thorium tests in a conventional reactor. Scientists at the University of Cambridge and elsewhere believe that thorium could potentially be re-used over and over again in modified conventional reactors.

As I reported here recently from the Thorium Energy Conference 2013 in Geneva, thorium supporters include Nobel Prize winning physicist Carlo Rubbia and former chief UN weapons inspector Hans Blix. Conventional French nuclear giant Areva last week publicly stated that is investigating thorium possibilities.

This week’s letter by Hansen and his fellow climate scientist did not mention the alternative technologies by name, but issued a call “for the development and deployment of advanced nuclear energy.”

It said that “renewable” energy technologies such as wind and solar simply won’t be enough to avoid further serious consequences from global warming.

NUCLEAR ENVIRONMENTALISTS

Many formerly anti-nuclear environmentalists have crossed over into the pro-nuclear camp, a theme conveyed in the feature length documentary film Pandora’s Promise. This week’s letter hopes to broaden that trend.

“We appreciate your organization’s concern about global warming, and your advocacy of renewable energy. But continued opposition to nuclear power threatens humanity’s ability to avoid dangerous climate change,” it said.

It further noted that, “Renewables like wind and solar and biomass will certainly play roles in a future energy economy, but those energy sources cannot scale up fast enough to deliver cheap and reliable power at the scale the global economy requires. While it may be theoretically possible to stabilize the climate without nuclear power, in the real world there is no credible path to climate stabilization that does not include a substantial role for nuclear power.”

It’s no coincidence that Hansen et al published the letter in the run-up to the two-week UN conference, where policy makers from around the world will attempt to agree on action to slow the effects of climate change. Often, these annual UN confabs – such as the 2009 Copenhagen installment – are remembered more for what they did not accomplish than anything else. Let’s see if Warsaw 2013 can at least leave some sort of positive nuclear impression.

For a full copy of the letter click here.

Photo is from Tarsandsaction via Wikimedia

Hans Blix: Shift to thorium, minimize weapons risk

Posted by Mark Halper on October 29th, 2013

Hans Blix CERN THEC13

Thorium on his mind. Hans Blix says it’s time for the nuclear industry to move away from uranium.

GENEVA – Hans Blix, the disarmament advocate who famously found no weapons of mass destruction in Iraq a decade ago, said today that thorium fuel could help reduce the risk of weapons proliferation from nuclear reactors.

Addressing the Thorium Energy Conference 2013 here, Blix said that nuclear power operators should move away from their time-honoured practice of using uranium fuel with its links to potential nuclear weapons fabrication via both the uranium enrichment process and uranium’s plutonium waste.

“Even though designers and operators are by no means at the end of the uranium road, it is desirable today, I am convinced, that the designers and the others use their skill and imagination to explore and test other avenues as well,” Blix said.

“The propeller plane that served us long and still serves us gave way to the jet plane that now dominates,” said the former United Nations chief weapons inspector who also ran the International Atomic Energy Agency from 1981 to 1997. “Diesel engines have migrated from their traditional home in trucks to a growing number of cars and cars with electric engines are now entering the market. Nuclear power should also not be stuck in one box.”

Blix rattled off a list of thorium’s advantages, noting that “thorium fuel gives rise to waste that is smaller in volume, less toxic and much less long lived than the wastes that result from uranium fuel.” Another bonus: thorium is three to four times more plentiful than uranium, he noted.

“The civilian nuclear community must do what it can to help reduce the risk that more nuclear weapons are made from uranium or plutonium,” Blix said. “Although it is enrichment plants and plutonium producing installations rather than power reactors that are key concerns, this community, this nuclear community, can and should use its considerable brain power to design reactors that can be easily safeguarded and fuel and supply organizations that do not lend themselves to proliferation. I think in these regards the thorium community may have very important contributions to make.”

Blix described the obstacles that are in the way of a shift to thorium and other nuclear alternatives as “political” rather than “technical.”

Not everyone agrees that thorium is a proliferation cure for the nuclear power industry. Even some supporters of thorium note that thorium fuel cycles yield elements such as uranium 233 that groups could use to make a bomb if they were able to get a hold of it.

The lively discussions surrounding these and other thorium issues will continue tomorrow at the conference, which is taking place at CERN, the international physics laboratory. Earlier at the gathering today, conventional nuclear giant Areva announced a thorium collaboration with Belgian chemical company Solvay. Yesterday, Nobel prize-winning physicist Carlo Rubbia lauded thorium for its “absolute pre-eminence” over uranium.

Photo of Hans Blix by Mark Halper

Areva strikes thorium development deal with chemical giant Solvay

Posted by Mark Halper on October 29th, 2013

Areva LucVanDenDurpel CERN THEC13

If he were to look over his shoulder, Areva’s Luc Van Den Durpel would see the word “thorium.” With the metal gaining attention as an alternative to uranium fuel, Areva is now stepping up thorium research.

GENEVA – French nuclear giant Areva, a stalwart of the conventional uranium-driven large reactor industry, today announced it is collaborating with €12.8 billion Belgian chemical company Solvay to research the possibilities of deploying thorium as a reactor fuel.

“Solvay and Areva have made an agreement to have a joint R&D program working on the whole set of thorium valorization (validation),” Areva vice president Luc Van Den Durpel said in a presentation at the Thorium Energy Conference 2013 at the CERN physics laboratory here.

Van Den Durpel said the effort would cover “the overall worldwide development related to thorium, both in the nuclear energy field and in the rare earth market.”

Thorium, a mildly radioactive element that supporters believe trumps uranium as a plentiful, safe, effective, weapons-resistant fuel – Noble laureate physicist Carlo Rubbia yesterday referred to its “absolute pre-eminence” over uranium – comes from minerals that also contain rare earth metals vital the to the global economy. Solvay’s business includes rare earth processing, which can leave thorium as a “waste” product that’s subject to strict and costly storage regulations. Companies that have to hold on to thorium would like to find a market for it.

Ven Den Durpel said Areva and Solvay will investigate “resolving the thorium residue issues arising from certain rare earth processing in the past and now.”

As a possible nuclear fuel, he acknowledged that thorium offers advantages such as reducing waste and proliferation risks. “It’s not the devil – you could call it sexy because it’s not plutonium and that why it’s attractive,” he said in reference to uranium’s notorious waste product. He also noted that thorium’s high melting point provides operational advantages.

But the Areva executive, who heads strategic analysis and technology prospects in corporate R&D, said that any chance of Areva using thorium in a reactor is a long way off.

“We would like to demystify thorium,” he said, noting that its benefits are often overstated and hyped, and that it has issues including the management of radioactive isotopes of protactinium and uranium involved in the thorium fuel cycle.

He said there is “not really” a market for thorium in the short term, but that a “medium term” market is a “possibility” that would entail mixing thorium with other fuels like uranium and plutonium in light water reactors. By complementing the other two fuels, thorium could potentially lengthen fuel cycles, reduce waste, and produce uranium 233 for use in other reactors.

But he said any transition to 100 percent thorium fuels would “take decades at least.”

Ven Den Durpel based his thorium assessments on use in light water reactors, and not in alternative reactor designs such as molten salt reactors or pebble beds.

Photo by Mark Halper

Nobel laureate: Go thorium

Posted by Mark Halper on October 28th, 2013

Carlo Rubbia Geneva THEC13 Reception2

Carlo Rubbia, mixing with delegates at this week’s International Thorium Energy Conference, says thorium has “absolute pre-eminence” over other fuel types, including uranium and fossil fuels.

GENEVA – If nuclear power is to finally overcome public opposition and the post-Fukushima backlash, government and industry must walk away from traditional reactor technology and shift to superior designs that rely on thorium rather than uranium.

So said Nobel Prize winning physicist Carlo Rubbia this morning, addressing the Thorium Energy Conference 2013, held here at the renowned international physics lab CERN.

“In order to be vigorously continued, nuclear power must be profoundly modified,” said Rubbia, a former director general of CERN and the co-winner of the 1984 Nobel Prize in Physics.

Rubbia noted that thorium has “absolute pre-eminence” over all fuels including uranium as well as fossil fuels. He said it must become a staple of nuclear because it leaves less long-lived waste than uranium, is far more plentiful, is resistant to weapons proliferation and has a much higher energy content so that reactors will require less of it (see chart below).

RENEWING SHIFT

Rubbia called for a shift toward thorium so that nuclear could play a big role as a low-CO2 energy source, a function that the public tends to associate with renewable energies like wind and solar.

“A distinction between renewable and not renewable energy is academic,” said Rubbia, who pointed out that the country most famous for CO2-spewing coal-fired plants, China, could generate the equivalent of its 2007 electricity production – 3.2 trillion kWh – by using an amount of thorium that is just a small percentage of China’s domestic production of rare earth metals. Thorium comes from minerals that also also contain rare earth elements, a class of materials that are vital to the world economy and that China controls.

MonaziteITHEC Geneva2013

Energy’s rock solid future. Thorium occurs naturally in minerals like this chunk of monazite from South Africa’s Steenkampskraal mine, on display at the Geneva conference.

Rubbia told a packed audience of thorium and reactor experts that thorium is probably also a superior fuel for reactors known as breeders, which produce more of their own fuel.

Thorium supporters differ over the best way to deploy the fuel. Speakers and enthusiasts from around the world are gathered here for four days to compare notes and advocate their own approaches.

SPLIT DIFFERENCE

Rubbia, a particle physicist, prefers a method in which an accelerator coaxes thorium to split by bombarding it with a neutron – a concept known as an “energy amplifier” which he helped conceive.

Unlike uranium, thorium is not “fissile.” It requires a method to kick start it, such as the accelerator approach or another technique that mixes it with an isotope of uranium that releases neutrons that in turn excite thorium.

Scientists and engineers also differ over whether to burn thorium in conventional reactors or in a number of alternatives such as molten salt reactors or pebble bed reactors, the designs for which date back decades. Both run at much higher temperatures than today’s reactors and thus support a more efficient generating cycle. They could also serve as a low-CO2 source of industrial process heat, replacing fossil fuels in operations such as cement and steel making.

Rubbia co-won the 1984 Nobel for work at CERN leading to the discovery of the W and Z bosons, which are related to the weak force, one of the four fundamental forces of nature along with the strong force, gravity and electromagnetism.

He is currently affiliated with the Gran Sasso National Laboratory in Italy as well as the Institute for Advanced Sustainability Studies in Germany. He was recently named a senator for life in Italy, where he previously ran ENEA, an energy and technology development agency where he promoted solar thermal power.

Other speakers followed Rubbia outlining their preferences for thorium and providing updates for thorium reactor initiatives in countries including China, Japan and India. Stay tuned the Weinberg blog for more reports.

Photos are by Mark Halper

-

EnergySourceJoules Rubbia CERN THEC

The Crown Joule. Thorium has a higher energy content than any other fuel including uranium, even uranium extracted from seawater (sw in the chart), according to this slide from Rubbia’s Geneva presentation.

 

© The Alvin Weinberg Foundation 2014
The Alvin Weinberg Foundation is a registered UK charity. Charity number: 1155255
The Alvin Weinberg Foundation web site uses cookies to record visitor patterns.
No personal information is collected, in accordance with our cookie policy

Design by Tauri-tec Ltd and the Alvin Weinberg Foundation