Archive for the ‘Security’ Category

Switzerland reject rapid nuclear phase out

Posted by Suzanna Hinson on November 29th, 2016

On Sunday the people of Switzerland were offered a choice in a referendum as to whether to accelerate the shut-down of their nuclear power stations. With a result of 55% to 45%, the public showed a clear support for maintaining their nuclear fleet.

Following the Fukushima incident, the Swiss government committed to a nuclear phase out leading to a 100% renewable economy, but the timescales were vague. The proposal to accelerate nuclear closures, put forward by the Green Party, would have resulted in three of their five plants being shut next year, the fourth in 2024 and the last in 2029. However with nuclear providing almost 40% of Switzerland’s power, the risks of compromised energy security, consequential pressures to bills and the economy, and the potential increasing reliance on fossil fuels to meet shortages were more important to voters than the Green’s concerns over ageing plants.  

The results of the referendum mean the current Swiss nuclear plants should continue to operate for approximately 60 years, with the first plant closing as previously planned during the 2030s. Other country’s reactions to Fukushima have been more extreme, with Germany closing all reactors and pushing their energiewende program. Although this has increased renewables, it has also increased coal and thus compromised Germany’s decarbonisation leadership. 

Switzerland also gets a large proportion of its power from renewables with approximately 60% coming from hydroelectric power. Combined with low-carbon nuclear power this means it has a very clean power sector. Swiss nuclear is not just used for power, but also for heat, an example that other reactors should follow. The BBC reported that, “Environmentalists have said no nuclear reactors should be allowed to operate for longer than 45 years”. However it is incorrect to argue all environmentalists, in Switzerland or elsewhere, are anti nuclear power. Hydropower has some severe consequences to biodiversity and also can have significant methane emissions and other renewables also have their impacts. Nuclear may not be renewable but pragmatic environmentalists would argue it is low-carbon, reliable power with no impact on air quality and little impact on biodiversity. Keeping existing plants is a good first step for nuclear and it is encouraging to see that in some areas the technology has public support. But a continued commitment to phase out nuclear could risk the environmental and economic benefits that nuclear provides Switzerland. Reuters have reported that the entire phase out plan is now being questioned, with the Swiss People’s Party (SVP), the largest in parliament, aiming to challenge it with a separate referendum on the grounds it is too expensive. Hopefully this referendum could represent a turning point for nuclear power in Switzerland and around the world, a very timely one considering the accelerating imperative of decarbonisation. 

We need to talk about Plutonium….

Posted by Suzanna Hinson on October 6th, 2016

An agreement between Russia and the USA to work together to dispose of weapons grade plutonium has been suspended. The deal dates back to 2000 when both nations agreed to reduce their nuclear weapons by disposing of 34 tonnes of plutonium each, enough to build approximately 17,000 nuclear weapons.
The strategy behind the agreement was a good one. Through a ‘sword-to-plough’ approach, the weapons grade material would be reprocessed and turned into clean energy to power homes and industry. The bilateral plan reduced the amount of weapons-grade plutonium and in turn burned it, thus producing vast amounts of carbon dioxide-free energy, whilst also strengthening the relations between the two countries with a very tense geopolitical history.
Unfortunately it is a breakdown in these relations that appears to have ended the deal. The annexation of Crimea in 2014 and the ongoing war in Syria have tested the relationship to breaking point. The failure of the recent Syrian ceasefire seems to have been the breaking point, with the US announcing that they will suspend discussion with Russia over Syria. Russia however claims that these are distractions and that the real issue is the USA’s reprocessing is insufficient and bombs could still be made from their plutonium.
This claim stems from the fact that Russia dilutes their plutonium and makes it into Mixed-Oxide (MOX) fuel which, in turn, would be used to generate electricity in reactors. This approach would see the plutonium permanently destroyed, whilst the Americans decided to scrap their MOX plant after Fukushima and opted to bury the plutonium instead. This, the Russians argue, contravenes the deal as the plutonium would still be retrievable.
Without this deal, the plutonium issue remains a significant one. There are large volumes of the material left over from nuclear weapons production. Plutonium is also produced by nuclear power stations. The UK is far from immune to this problem, burdened with the biggest plutonium stockpile in the world.
But with every crisis, there is an opportunity. Advanced reactors have the potential to burn up plutonium much more efficiently and easily. The US, Russia and the UK are all investing in new, Generation 4 designs that can deal with the problem. Plutonium is a domestic security issue and combatting it with advanced nuclear power not only reduces this insecurity but also simultaneously increases energy security.
International disagreements, however serious, should not be allowed to stand in the way of national or international actions on turning plutonium from a vice to a virtue. Weinberg Next Nuclear’s will soon be addressing this issue in a new report, discussing how the UK should deal with its legacy waste, including the plutonium stockpile.

Report Launch: Next Steps for Nuclear in the UK

Posted by Stephen Tindale on April 27th, 2016

Next Steps for Nuclear in the UK

A new report from pro-nuclear think tank Weinberg Next Nuclear, outlines what the Government should do to make the UK a world leader in advanced nuclear technology. The report argues that the British government should support small nuclear reactors as well as large new reactors, and that by the early 2020s at least three advanced reactor designs should have been assessed by the regulator.

Existing civil nuclear reactor designs provide large amounts of clean, low carbon energy, so improving energy security and air quality and mitigating climate change. But they have high upfront capital costs, and are not sufficiently flexible to back up wind and solar power. Advanced nuclear designs could address these drawbacks.

In November 2015 Weinberg Next Nuclear published a report on ‘The Need for Nuclear Innovation’. Chancellor George Osborne subsequently promised, in his 2015 Autumn Statement, £250 million over five years for nuclear R&D. In the March 2016 Budget, he announced a £30 million competition for advanced manufacturing in nuclear, and a competition to support innovation in Small Modular Reactors (SMRs).

This report:

– outlines criteria which government should use in selecting reactor designs to support (but does not say which designs should be chosen);

– recommends that at least one of the reactors supported should be a Generation IV design, because this could re-use spent nuclear fuel, and also use plutonium as fuel. The UK has the largest plutonium stockpile in the world;

– suggests that SMRs and micro-reactors (less than 20 megawatts) will be cheaper to construct than large reactors because they can be made on production lines then transported to site. Generation IV reactors may also be considerably cheaper than existing nuclear designs due to less complex designs – though this will not be known until one has been constructed;

– supports the Office for Nuclear Regulation’s proposal to increase its capacity by expanding staff numbers. Lack of regulatory capacity is currently the major barrier to nuclear innovation in the UK;

– proposes that UK nuclear regulators should work closely with their Canadian and US counterparts, with the aim of developing a regulatory approval mechanism that would cover all three countries.


Download the report.

Stephen Tindale, director of Weinberg Next Nuclear, said:

“The UK’s energy mix must be based on diversity. So the policy argument should not be whether to support solar, wind, CCS or nuclear. ‘All of the above’ will be needed.

Existing nuclear technology is very good, but future nuclear technology can be even better. If the £250 million is sensibly spent, it could contribute to the UK becoming a world leader in both small and Generation IV reactors.”



07941 433780


Notes for editors

1) Weinberg Next Nuclear is part of the Alvin Weinberg Foundation charity. The Foundation plans to continue work on advanced nuclear energy, and to expand its work into other clean energy sources – wind, solar, tidal, geothermal, CCS.

2) Three companies contributed sponsorship support to the workstream behind this report: Terrestrial Energy, URENCO and Moltex Energy. Editorial control remained with Weinberg Next Nuclear alone.


One step closer to building an Advanced Boiling Water Reactor (ABWR) in the UK

Posted by Katherine Chapman on November 3rd, 2015

Hitachi-GE’s improvement on the Boiling Water Reactor has progressed to the final stage of the UKs regulatory process. The office of Nuclear Regulation (ONR) announced the completion of Step 3 of the Generic Design Assessment on 30 October, with the whole assessment scheduled to finish in 2017.

Step three focuses on the safety and security of the ABWR and requires Hitachi GE to present arguments and evidence to support their safety and security claims. The assessment is designed to be extremely rigorous and continues to assess the safety of every aspect of the design throughout its process.

The fourth and final phase of the process includes a detailed assessment of the design as well is further scrutiny of the safety and security. The environmental impact of the reactor will also be assessed, with a consultation with the Environment Agency (EA) and National Resources Wales (NRW).

A completed Generic Design Assessment must be coupled with a nuclear site license and regulatory approval for the construction of the reactor before a new nuclear power station can be built. Horizon Nuclear Power, a subsidiary of Hitachi Ltd, plans to build two ABWR is in the UK; in Wylfa Newydd on the Isle of Anglesey and Oldbury-on-Severn in South Gloucestershire.

This milestone in the regulatory process for an updated reactor design is a step in the right direction for building new and improved nuclear power reactors in the UK, and possibly paves the way for the next generation of advanced reactors to follow in the ABWR’s footsteps.

Common sense means keeping nuclear in Sweden

Posted by Suzanna Hinson on August 18th, 2015

In 1980, Swedes voted in a referendum not to build any new nuclear power stations, but to allow existing stations or those under construction to operate until the end of their design life. This decision was eventually rescinded in 2010 to allow new reactors only at existing sites. Since then, support for nuclear has continued to be far from steady.

Now some members of the Swedish coalition government want to prematurely close their entire nuclear fleet, and replace the 2 trillion kWhs (40% of Swedish electricity) with renewables and gas, despite the fact that some of the reactors are only half-way through their lifespans.

As James Conca has written in Forbes, this would make no sense. Sweden’s electricity demand is growing as they attempt to remove fossil fuels from their energy mix by electrifying transport, but adequate supply is proving challenging. The Swedish Energy Agency (Energimyndigheten) and the Royal Swedish Academy of Sciences say there is no room for further expansion of hydropower. The Grid Operator estimates that Sweden would need an additional 30,000 MW of wind power to replace the 9,000 MW of lost nuclear power (using a generous capacity factor for wind of 30%), plus 12,000 MW of back-up power from natural gas.

The cost of installing this new infrastructure would be about $45 billion dollars followed by another $4 billion to operate them over 20 years. Nuclear reactors are expensive to build but then cheap to operate: continuing the Swedish nuclear fleet over the next 20 years would cost only $3 billion. This is despite the fact that Sweden has a tax discriminating against nuclear power – now about 0.67 Euro cents/kWh, which makes up about one-third of the operating cost of nuclear power (wind and biomass are subsidised by about three times that). The European Commission is currently reviewing whether the tax violates European Union competition law.

Wind power is an essential part of the low-carbon energy mix, and Sweden has great potential to further expand its wind farms despite rapid recent growth reaching a capacity of 5,425 MW in 2014. Gas is less bad than coal, but is still a fossil fuel, so much worse for the climate than nuclear energy. The problem is that gas and wind take time to install – it is more likely the only power that could be produced quickly enough is coal and oil: the dirtiest of fossil fuels and exactly what nuclear was installed to avoid.

As Conca argues, shutting down Sweden’s nuclear fleet would make no sense at all. Sweden has a great history with nuclear power, having run reactors since 1972, and is currently building advanced deep-geological nuclear waste repositories. Nuclear energy’s proponents must argue robustly against its political opponents. The proponents have common sense on their side.

Molten Salt Reactors in Highgate

Posted by Laurence Watson on September 25th, 2014

A view of Highgate by John Constable [Public domain] via Wikimedia Commons

A view of Highgate by John Constable [Public domain] via Wikimedia Commons

The Highgate Literary and Scientific Institution has been the cultural of heart of Highgate Village in north London since it was founded in 1839. It hosts lectures and events on literature, politics and… next-generation nuclear technology.

I was very pleased to represent The Alvin Weinberg Foundation and speak to members of the HLSI and the public about the possible futures for nuclear energy. This included an outline of our favoured design, the Molten Salt Reactor and its various benefits and differences with respect to current technology, as well as some discussion around thorium as a nuclear fuel.

The questions ranged from the more technical, such as how does one maintain criticality with a liquid fuel (answer – the same as with solid fuel, by the configuration of your fuel channels, or tubes such that there is enough nuclear material in one place to achieve criticality), to the amount of waste produced by a Molten Salt Reactor (answer – far less than with a conventional one!). As is often the case, many people by the end asked why, if all the benefits are true, we are not yet using these technologies?

The history of the MSR, the development of the nuclear industry, and subsequent dismantling of our research base provides some of the answers. The challenges to bring these concepts to market are large, but we have the capability to do it. The audience, I hope, were left with a new enthusiasm for a brighter future for nuclear energy and for the solutions needed to decarbonise our world as quickly as possible.

NuScale OnTruck ChenectedAichieOrg

Alternative nuclear rolled ahead a bit this week, as the U.S. DOE agreed to fund NuScale’s small modular reactor, transportable on the back of a truck.

The U.S. Department of Energy has taken another “small” step toward shaking the nuclear industry out of its uninventive ways and towards innovative reactors that augur lower costs and improved operations and safety for a low CO2 future: It has granted up to $226 million in funding to an Oregon startup that is developing a “small modular reactor.”

The award to Corvallis, Oregon-based NuScale Power marks the second tranche of a $452 million program that DOE announced in March 2012. It comes a year after DOE’s first grant to North Carolina-based Babcock & Wilcox. That grant was reported at up to $225 million at the time, although DOE told me today that it has so far committed $101 million to the five-year B&W project through March 2014 and that it is currently reviewing the release of additional funds.

“Small modular reactors represent a new generation of safe, reliable, low-carbon nuclear energy technology,” U.S. Energy Secretary Ernest Moniz said in announcing the award to NuScale. “The Energy Department is committed to strengthening nuclear energy’s continuing important role in America’s low carbon future.”


Like B&W, the NuScale design calls for a scaled-down conventional reactor, fueled by solid uranium, cooled by ordinary water and operated in a pressurized environment. By virtue of its smaller size, the NuScale “Integral Pressurized Water Reactor” (IPWR) portends lower costs because in principle it could be factory-built in more of an assembly line manner than could large conventional reactors; the idea is to ship them to a site via truck, rail or barge for final assembly. The “integral” design fits a reactor and a steam generator in an 80-foot by 15-foot cylinder.

The small size would also allow users such as utilities to purchase new reactors in less expensive increments rather than paying billions of dollars up front for conventionally sized reactors, which reach well over a gigawatt in electrical capacity. At 45 megawatts electric, the NuScale reactor provides about 3 percent the output of a 1.3-GW reactor. NuScale’s “modular” design permits up to 12 of the pressurized water reactors in a plant, for a total capacity of 540 MW.

NuScale, founded in 2007, has designed the IPWR to sit underground, thus protecting it from attack. The IPWR deploys a “passive cooling” system that would release a pool of water from above the reactor in the event of an emergency, rather than rely on pumps to circulate water (failed auxiliary electricity systems knocked out cooling at Japan’s Fukushima reactor, leading to meltdowns there).


NuScale partner Energy Northwest, a Richland, Wash. company that produces power for utilities, said that NuScale could develop a commercial six-to-12-reactor plant on the site of Idaho National Laboratory by 2024, which Energy Northwest would have the right to operate. Utah Associated Municipal Power Systems, a cooperative of government entities that pools electrical power resources, is also part of the scheme.

U.K. engineering stalwart Rolls Royce is also part of the NuScale small modular project. NuScale is majority owned by $27.6 billion engineering company Fluor Corp., based in Irving, Texas.

The presence of several companies in the NuScale project echoes the B&W small modular reactor venture which won the first tranche of DOE’s $452 million in SMR funding. B&W is working with U.S. construction firm Bechtel, and with federal power provider Tennessee Valley Authority. They hope to deploy four 180-MW reactors at TVA’s Clinch River, Tennessee site, via a joint venture called Generation mPower that is 90 percent owned by B&W and 10 percent by Bechtel.

That project took a peculiar turn recently, when B&W said it plans to sell 70 percent of its interest in mPower – including intellectual property.

A DOE spokeswoman said that DOE has so far committed $101 million to B&W through March, 2014. Possible further funding is currently under review, she said. B&W’s five-year federal funding period began in December, 2012. If DOE released more funds, the total would not exceed $226 million, the same five-year cap on the NuScale funding, which runs through Dec. 2018. In both cases, DOE would also be limited to funding no more than half of project costs, the spokeswoman said. She added that there will be no more grants under the $452 million Funding Opportunity Announcement (FOA).


While the DOE grant helps to push U.S. nuclear in a new direction of smaller and less expensive reactors, it stopped short of endorsing altogether new reactor designs that would support much higher operating temperatures.

These so-called “fourth generation reactors” include liquid fuel reactors known as molten salt reactors, as well as solid fuel reactors using “pebble bed” and “prismatic” fuel structures rather than conventional rods.  They would provide many additional advantages. For instance, they typically operate in unpressurized environments, which is a safety benefit over today’s pressurized reactors. They tend to leave less long-lived waste.

At higher temperatures they also generate electricity more efficiently, which lowers generating costs and would help nuclear compete in a market where natural gas prices are currently low. Unlike natural gas generation, nuclear power generation is carbon free, and the nuclear lifecycle is low-carbon.

And as Secretary Moniz himself noted last month, high temperature reactors could serve as sources of low-carbon heat for industrial processes and thus expand nuclear power beyond its role of generating electricity.

A number of high temperature reactor developers vied for the DOE award that went to NuScale, including San Diego’s General Atomics, and X-Energy Inc., a Greenbelt, Maryland-based company that is developing a pebble bed reactor based on older South Africa designs.

Stay tuned to the Weinberg site as we delve into some of these alternative reactor designs in our upcoming blog posts.

Photo is from NuScale via ChenectedAiche

Negotiations about Iran's nuclear plans

By U.S. Department of State from United States [Public domain], via Wikimedia Commons

The recent agreement between six world powers and Iran has, according to President Obama; “cut off Iran’s most likely paths to a bomb”The agreement includes many commitments to cease enrichment of uranium above concentrations of 5%, dismantling or halting construction of additional centrifuges and a pledge to not construct a reprocessing facility. Iran will continue to enrich uranium to concentrations of 3.5% to keep its stocks at a constant level as it is consumed in the civilian nuclear power program.  

However, much of the discussion about the deal has missed one key question: the extent to which we are made prisoners by the proliferation risks of existing fuel cycles. Could a programme of nuclear R&D, aimed at developing proliferation-resistant nuclear energy, prevent future nuclear crises?

What if we said that no enrichment facilities would be necessary if Iran was planning on producing nuclear energy with a thorium fuel cycle?

Thorium sits two places down the periodic table from uranium, and while very little of naturally occurring uranium is the U235 necessary for use in a reactor, almost all of naturally occurring thorium is Th232, which is the isotope suitable for use as a nuclear fuel. . Because of this, there is no need for any enrichment of thorium fuel and no need for centrifuges of any kind. The lack of any need for these facilities would certainly change the game in terms of detecting rogue nuclear programmes.

However, there is a “but”: thorium fuels need a “fissile driver” to provide the initial neutrons to start the thorium chain reaction. This can be uranium-233, uranium-235 or plutonium, although for anti-proliferation purposes we should certainly discount the last two.

So that leaves us with U233. Handily, uranium-233 is produced by thorium fuels in a reactor (in a thorium fuel cycle, it is actually uranium-233 that fissions). The rub is that the world has very little U233 available and if we want to develop proliferation-resistant fuel cycles, we’ll need a lot more of it. Currently the only way to make it is to kickstart thorium fuel with…U-235 or plutonium, and then reprocess it (although Accelerator-Driven Systems could help).

Proliferation resistance

While U233 is recognised as a proliferation risk by the IAEA, it is far less suitable for making weapons than highly enriched U235 or Pu239. Indeed, only two nuclear tests have involved U233; the USA’s ‘Operation Teapot’and one 0.2kt experimental design in India’s Pokran-II tests. No nuclear weapons in existence are made with U233. Sadly uranium-235 and plutonium have a well-proven track record of making functioning bombs.

U232 is produced in smaller amounts alongside the U233, which is a hard gamma ray emitter. This gives the material a strong and easily detectable radiation signature. The material has to be handled very carefully, and fuel fabrication for example has to be done remotely with sophisticated equipment. These increased difficulties have long been cited as  properties that would hinder weapons proliferation.

Hans Blix, the former head of the International Atomic Energy Agency has recently called for the development of nuclear energy from thorium, citing a lower risk of weapons proliferation from reactors as well as benefits including reduced waste. He wrote in the Guardian newspaper that the commitments were “constitute substantial bars to any bombmaking” without curtailing the civilian power program. I’m sure he would agree that if Iran was pursuing thorium-fuelled reactors, the barriers to a weapons program would be even higher.

Of course, how any future international thorium fuel programme would obtain and distribute the “fissile drivers” would be very sensitive, needing just the kind of increased transparency and oversight that has just been agreed. What is certain is that proven thorium fuels, started with U233, would give the international community new diplomatic options in future nuclear disputes.

The nuclear club is expanding

Thirty-one of the world’s countries currently use nuclear power to generate over 11% of global electricity. Over forty-five countries are considering embarking down the nuclear route, with the front-runners after Iran and UAE including Lithuania, Turkey and Belarus. It is important to stress that thorium is not a magic bullet to weapons proliferation– but it can be a part of the solution to future international proliferation disputes, alongside appropriate regulatory regimes and oversight mechanisms. Given the pressing need for low-carbon energy it seems only prudent to support a more proliferation-resistant route for nuclear energy.

The MegaTons to MegaWatts program which saw almost 20,000 Russian warheads dismantled and used as fuel in American nuclear power plants has recently come to an end, providing almost 10% of US electricity for 15 years. A similar amount of warheads remain in existence. In 1953, Eisenhower’s ‘Atoms for Peace’ speech carefully tried to open the eyes of the world to the positive benefits of nuclear energy, after the horrors of the nuclear bomb had become clear. He urged that “the miraculous inventiveness of man shall not be dedicated to his death, but consecrated to his life”. Perhaps it is time for that speech to be revisited, starting with a massive push to develop proliferation-resistant nuclear energy.

U.S. energy secretary: Deploy nuclear for industrial heat

Posted by Mark Halper on November 22nd, 2013

Moniz OakRidge Y12

Hot on nuclear. Secretary Moniz says that advanced reactors could furnish clean industrial heat. He also backs President Obama’s point that new and safer nuclear improves energy security and reduces proliferation risks. The Y12 sign in the background reminds us of the proliferation connection. Y12 is a defense related unit at DOE’s Oak Ridge facility, where Moniz spoke in this June photo.

IRVINE, CALIF. – The notion that nuclear reactors could provide clean, CO2-free heat for industrial process – and thus expand nuclear power’s role beyond electricity generation – got a big boost here when U.S. Energy Secretary Ernest Moniz endorsed the idea.

Speaking via a video link last Friday to a nuclear power and medicine conference, Moniz said that reactors currently under development – often called “advanced” or “fourth generation” reactors and typically small in size – could safely operate at much higher temperatures than conventional models and would be key to broadening nuclear’s role.

“Small modular reactors, especially high temperature ones, may have a particular role there essentially as heat sources,” Moniz told delegates at the Future of Advanced Nuclear Technologies gathering organized by the National Academy of Sciences and the Keck Futures Initiative. He outlined a number of possible applications, including “process heat, water desalination, hydrogen production, petroleum production and refining.”

At the moment, the U.S. lags behind at least one country, China, in supporting the development of advanced reactors such as molten salt and pebble bed reactors. Jiang Mianheng, who heads the development of molten salt reactors (MSRs) in China (Jiang is the son of China’s former president Jiang Zemin), has stated that China plans to use them for hydrogen production, gasifying coal, methanol manufacturing and other purposes. China recently released revised timelines for two of its high temperature reactors. It hopes to build a 2-megawatt pilot pebble bed by around 2015, and a 100-megawatt pebble bed demonstrator by 2024, among others.


Moniz’s remarks came as the U.S. Department of Energy prepares to select a winner for the second tranche of its total $452 million funding award for small modular reactors (SMRs). SMRs represent potential cost savings over large conventional reactors because manufacturers could build them in more of an assembly line fashion, and users could purchase modules in increments and thus reduce upfront capital costs.

Many SMR designs also support operations at temperatures ranging from around 600 degrees C to 900 degrees C, considerably higher than conventional reactors. A number of high temperature reactor developers are vying for the DOE award, including San Diego’s General Atomics. X-Energy Inc., a Greenbelt, Maryland-based company that is developing a pebble bed reactor based on older South Africa designs, is also believed to have submitted. So, reportedly, have a number of standard temperature SMR developers, including NuScale of Corvallis, Wash., and Westinghouse.

DOE granted its first round a year ago to Babcock & Wilcox for its mPower reactor, a scaled down version of a conventional reactor that does not operate at the high temperatures that could supply industrial heat. Days before Moniz presented at last week’s conference, Babcock announced that it wants to sell up to 70 percent of the company in order to continue building the SMR. The company is hoping to install four of the reactors at the Clinch River site in Tennessse, in partnership with construction and engineering giant Bechtel and with the Tennessee Valley Authority, a power provider.

The winner of round two won’t necessarily be a company developing a high temperature reactor.


Despite Moniz’s public endorsement for advanced reactors, the DOE trails China’s concerted efforts. Those include a two-year-old collaboration with three DOE-backed U.S. universities – the University of California Berkeley, the Massachusetts Institute of Technology and the University of Wisconsin –  in molten salt coolants for solid-fueled high temperature pebble bed reactors. DOE has provided the three universities with $7.5 million.

I asked Moniz after his presentation what measures DOE might take to step up its commitment to advanced reactors and bridge the gap with countries like China.

“I can’t say too much specifically,” he said. “But let’s just say we are trying to marshall some resources to increase our focus in that area.”

High temperature reactors provide other power benefits in addition to supporting industrial processes. For example, they support a more efficient electricity generating process, which cuts the cost of electricity.

And like all nuclear, high temperature reactors emit no CO2 during the generating process while having a very low CO2 footprint over the lifetime of a nuclear plant including mining fuel and constructing reactors.


Addressing nuclear in general, Moniz said that nuclear is “very clearly part of the solution set” in President Obama’s strategy to mitigate man-made climate change by shifting to low CO2 technologies.

“There is no one low carbon solution,” Moniz said, noting that nuclear is “not a silver bullet” but that “neither are any of the other technologies.”

Moniz cited a recent open letter by four renowned climate scientists calling for nuclear power to help stave off the ravages of man-made CO2 induced climate change. In that letter, signed by long time climate campaigner and Columbia University professor James Hansen among others, the scientists push for the deployment of new reactor types.

“I would argue that the discussion about whether we need to respond to climate change is largely over,” said Moniz, coming down squarely on the “respond” side.

The energy secretary also quoted Obama in urging continued development of nuclear energy for a multitude of reasons.

“When we enhance nuclear security, we’re in a stronger position to harness safe clean nuclear energy,” said Moniz, quoting from a speech that the president delivered at South Korea’s Hankuk University in March 2012, which continued, “When we develop new safer approaches to nuclear energy, we reduce the risk of nuclear terrorism and proliferation.”

That includes the development of advanced, high temperature reactors.

Photo is from Lynn Freeny, U.S. Government, via Flickr

Note: I’m in the midst of 10-day swing visiting various advanced nuclear initiatives up and down North America’s west coast. Stay tuned for more reports. – MH


Hans Blix: Shift to thorium, minimize weapons risk

Posted by Mark Halper on October 29th, 2013

Hans Blix CERN THEC13

Thorium on his mind. Hans Blix says it’s time for the nuclear industry to move away from uranium.

GENEVA – Hans Blix, the disarmament advocate who famously found no weapons of mass destruction in Iraq a decade ago, said today that thorium fuel could help reduce the risk of weapons proliferation from nuclear reactors.

Addressing the Thorium Energy Conference 2013 here, Blix said that nuclear power operators should move away from their time-honoured practice of using uranium fuel with its links to potential nuclear weapons fabrication via both the uranium enrichment process and uranium’s plutonium waste.

“Even though designers and operators are by no means at the end of the uranium road, it is desirable today, I am convinced, that the designers and the others use their skill and imagination to explore and test other avenues as well,” Blix said.

“The propeller plane that served us long and still serves us gave way to the jet plane that now dominates,” said the former United Nations chief weapons inspector who also ran the International Atomic Energy Agency from 1981 to 1997. “Diesel engines have migrated from their traditional home in trucks to a growing number of cars and cars with electric engines are now entering the market. Nuclear power should also not be stuck in one box.”

Blix rattled off a list of thorium’s advantages, noting that “thorium fuel gives rise to waste that is smaller in volume, less toxic and much less long lived than the wastes that result from uranium fuel.” Another bonus: thorium is three to four times more plentiful than uranium, he noted.

“The civilian nuclear community must do what it can to help reduce the risk that more nuclear weapons are made from uranium or plutonium,” Blix said. “Although it is enrichment plants and plutonium producing installations rather than power reactors that are key concerns, this community, this nuclear community, can and should use its considerable brain power to design reactors that can be easily safeguarded and fuel and supply organizations that do not lend themselves to proliferation. I think in these regards the thorium community may have very important contributions to make.”

Blix described the obstacles that are in the way of a shift to thorium and other nuclear alternatives as “political” rather than “technical.”

Not everyone agrees that thorium is a proliferation cure for the nuclear power industry. Even some supporters of thorium note that thorium fuel cycles yield elements such as uranium 233 that groups could use to make a bomb if they were able to get a hold of it.

The lively discussions surrounding these and other thorium issues will continue tomorrow at the conference, which is taking place at CERN, the international physics laboratory. Earlier at the gathering today, conventional nuclear giant Areva announced a thorium collaboration with Belgian chemical company Solvay. Yesterday, Nobel prize-winning physicist Carlo Rubbia lauded thorium for its “absolute pre-eminence” over uranium.

Photo of Hans Blix by Mark Halper

© The Alvin Weinberg Foundation 2014
The Alvin Weinberg Foundation is a registered UK charity. Charity number: 1155255
The Alvin Weinberg Foundation web site uses cookies to record visitor patterns.
Read our data protection policy

Design by Tauri-tec Ltd and the Alvin Weinberg Foundation