Archive for the ‘Technology advances’ Category

Nuclear in Africa

Posted by Suzanna Hinson on May 16th, 2017

Whilst nuclear power progress is struggling in South Africa, other African nations are keen to exploit the technology. World Nuclear News has reported that Uganda has sent a delegation to China to learn about nuclear technology and begin talks on cooperation.

Uganda has an electrification rate of 20% since June 2016, meaning there is a need for more power than expanding hydroelectric sites can provide. Uganda’s Vision 2040 roadmap includes the development of 40,000 MW of nuclear energy as part of the future energy mix. Prisca Boonabantu, undersecretary in the Ministry of Energy and Mineral Development and leader of the delegation to China, said “Plans have been made in Uganda to have clean and safe energy generation sources with nuclear being one of them.” She added that Uganda welcomes partners to help construct, train and develop nuclear energy in line with International Atomic Energy Agency standards.

Uganda has already signed a Memorandum of Understanding on nuclear energy cooperation with China Central Plains Foreign Engineering Company and China Nuclear Manufacturing Group. This follows a previous Memorandum of Understanding signed between the Ugandan ministry and Russian state nuclear corporation Rosatom for cooperation in the peaceful uses of nuclear.

Uganda has local uranium deposits that it plans to exploit with help from Russia and China. The country is one of many on the African continent recognising the benefits of nuclear power with Kenya, Ghana, Nigeria, Egypt, Tunisia, Morocco, Algeria all engaging with Russia’s Rosatom. As these countries develop, safe, secure and sustainable power provision is key. Nuclear power can help provide the energy needs of Africa and advanced reactors can ensure that the reactors are as safe and cost efficient as possible.


Nuclear companies collaborate for progress

Posted by Suzanna Hinson on March 29th, 2017

Toshiba may still be struggling with financial difficulties but other nuclear developers are pushing ahead with progress. This month GE Hitachi Nuclear Energy (GEH) and Advanced Reactor Concepts LLC (ARC) have signed a memorandum of understanding to collaborate on progress a joint SMR design.

Both GE Hitachi and ARC have extensive experience with advanced nuclear, specifically sodium-cooled fast reactors. Both of their reactor designs are based on the same prototype, the EBR-II at Argonne National Laboratory Idaho, which ran successfully for more than 30 years. Despite the similarity between their reactors, they have been designed for very different purposes. The ARC-100 is for efficient and flexible electricity generation, while operating for up to 20 years without the need for refuelling. On the other hand, PRISM has primarily been focused on closing the fuel cycle by using spent fuel and other “waste” and therefore is designed to refuel every 12 to 24 months.

Their collaboration will initially be aimed for deployment in Canada. The companies will pursue a preliminary regulatory review through Canada’s Vendor Design Review process, building on earlier technology licensing success in the USA. Sodium cooled reactors are one of the most advanced technologies so most likely to be able to replace the current, ageing, outdated fleet of reactors.

NIA’s SMR conference: great discussion, now we need action

Posted by Suzanna Hinson on March 3rd, 2017

On Monday, the Nuclear Industry Association held its Small Modular Reactor conference. Weinberg Next Nuclear were delighted to attend and our director Stephen Tindale was one of the many speakers.

The conference was opened by Tom Wintle, deputy director of SMRs, decommissioning and waste at the department of Business, Energy and Industrial Strategy. Though he spoke very eloquently about the importance of nuclear, and SMRs to the government, particularly in regards to the Industrial Strategy’s aims of home grown industries, developing skills, regional rejuvenation and a stronger economy for the growth areas of tomorrow, he would not be drawn on the real issues the audience clearly wanted to hear about: the much delayed SMR competition and the question of public funding at Moorside. Instead, he highlighted changing priorities of the government, with a renewed focus on energy security, consumer bills and the potential for driving exports and capturing a global SMR market in a post Brexit UK. He would also not be drawn on the future relationship with Euratom, saying it was too early to speculate but repeating it was a non-negotiable aspect of exiting the EU, a decision many we spoke to think is premature and will lead to huge hurdles for British nuclear in the future.

Clearly, despite the challenges ahead, the potential and appetite for new nuclear displayed at the conference was immense. Talks followed by Charles Potter of the national Nuclear laboratory who said there were 250 potential sites for SMRs in the UK with an estimate of 70GWe that could be developed. Then Dr John Iris Jones spoke about the nuclear site at Trawsfynydd and how the community, who largely rely on the current nuclear reactor for jobs, were strongly in support of a new SMR and were keen to see progress on the technology.

Our Director Stephen Tindale was on a panel with Mike Middleton of the Energy Technology InstituteLiz Saville-Roberts MP for Dwyfor Meirionnydd and Tom Greatrex of the Nuclear Industry Association discussing SMRs and Industrial Strategy. He argued the government needed a portfolio of clean energy technologies, and within the nuclear portfolio itself, there are lots of opportunities including load following for intermittent technologies and using up the spent fuel stockpile for energy instead of treating it as waste. When asked about government plans he said the Government have spent enough time building a vision; now, we need action. The action we need to see, Stephen recommended, was the Government telling the Nuclear Decommissioning Authority to release sites for advanced nuclear and instructing the Office for Nuclear Regulation to undertake Generic Design Assessments for advanced reactors, expanding their capacity to do so if necessary. 

Later panels discussed achieving and financing SMRs. The former by Chris Lewis from EY and Richard Beake from Atkins discussed the 60x30x2 challenge. This incorporates electricity at less that $60 per mwh, available by 2030 at a cost of $2billion per plant. Nuclear power stations have thus far been failing at this challenge because they are too large and complex, generating much hope that SMRs could be the smaller, simpler solution that will deliver. Counteracting this point was a later finance panel who said getting cost down is over-emphasised as to an investor it sounds like risks. This panel, comprising Fiona Reilly from Atlantic Superconnection LLPAnurag Gupta from KPMG LLP and Gareth Price from Allan & Overy LLP, also argued that BEIS were putting too much hope into an export market as with bigger contributors emerging like China and the US, it is unlikely that the UK will be able to compete. Instead, they argued other costs should be taken into account such as the avoided cost of managing the plutonium stockpile if re-cycled as fuel, and the value of jobs to communities which are worth more than the wages alone. Overall they made a strong statement for state-led nuclear power incorporating the private sector at a later stage of development if possible.

The other sessions of the day and networking were all equally interesting at what was overall an excellent event. However the clear mood is that talking and discussion are not being paralleled with policy progress. The sector desperately needs to see some action from government, to progress with the SMR review, provide certainty for Moorisde and clarify the terms of Euratom membership. Without certainty that the UK is still a nuclear player the sector will easily be lost overseas, to Canada, the USA or Asia, where the necessary action and support is more readily available.

Nuclear energy in 2017

Posted by Suzanna Hinson on December 16th, 2016

An increasing number of countries are embracing nuclear as one solution to their energy needs. Much progress has been made in 2016, and progress is likely to continue into 2017. However, with the scale of the energy and climate challenges, greater ambition is needed in the nuclear sector. 2017 should be the turning point in which a new, advanced nuclear age begins.

This year the UK finally approved the Hinkley Point C European Pressurised Reactor. Although far from the best design, the first nuclear power plant in a generation is worthy of celebration. The UK continued its support for advanced nuclear too, with the Small Modular Reactor competition launched and further funding for nuclear innovation allocated. In 2017 the Generic Design Assessment (GDA) for the Advanced Boiling Water Reactor will likely be completed and the results of the SMR competition announced. But progress remains slow and the UK should combat this with greater regulatory capacity as well as investment in options which use spent fuel and plutonium as a resource rather than waste.

New nuclear is making more progress across the Atlantic in North America. In the USA, four new reactors are being constructed and many more are planned. The Obama administration gave grants to two emerging reactor designs under its GAIN initiative. It is unclear whether this support will continue in 2017 with President Elect Donald Trump being pro-nuclear, but also pro-fossil fuel.

Justin Trudeau’s government in Canada has been more supportive of nuclear than many had expected when he was elected in 2015. Candu reactors continue to be pursued around the world, but in Canada itself policy has turned towards new designs, including Molten Salt Reactors. Canada has also committed to working on a new long-term energy plan for the future. In 2017 Canada should push ahead with MSRs and ensure its new energy plan recognises the benefits of nuclear power.

Despite this progress in Europe and America, it is in the East that the greatest progress on nuclear power has been achieved. Russia continues to lead the world on fast reactors, with its Beloyarsk reactor turned up to 100% power. In 2017 the Russians should continue this trend and build on their ambitious sodium cooled fast reactor program.

Japan has continued to restart its nuclear power stations in 2016 following the nation-wide shutdown post-Fukushima. As the country begins to benefit from the lower bills and reduced demand on often-imported fossil fuels, this trend should accelerate with Japan re-embracing its nuclear infrastructure.

China has been pushing ahead with all types of energy and all types of nuclear reactors. As air pollution and energy security cause concern, the government is planning a doubling of nuclear capacity to at least 58 GWe by 2020-21, then up to 150 GWe by 2030. China is working on some of the most advanced reactors in the world, including the molten salt program, and intends to export this expertise more in the coming years.

Similarly India has made great progress with nuclear in 2016. Multiple projects comprising multiple types of reactors are under construction or planning. The prototype fast reactor is expected to go critical in 2017 allowing India to enter the second stage of its 3 stage nuclear power program for Thorium.

2017 looks likely to be a year of global progress on nuclear energy. Leadership in this field is certainly shifting East. The West should take note of this progress, and do more to keep up. The energy security advantages of nuclear are more widely recognised and the commercial rewards on offer from the global nuclear market are growing. Other low-carbon energy sources – renewables and carbon capture and storage – are important and much greater energy efficiency is essential. But with the challenges the world faces in 2017 and for the rest of the century, nuclear is more vital than ever, to provide safe, secure and sustainable energy for all.

Weinberg Next Nuclear welcomes UK nuclear funding

Posted by John Lindberg on November 10th, 2016

On November 3rd the UK Government announced further funding plans for advanced nuclear research in the UK – part of the £250m over 5 years promised by previous Chancellor George Osborne. The Department for Business, Energy and Industrial Strategy promised £20 million for an initial phase of a new nuclear research and innovation programme. The priority areas of research were recommended by the Nuclear Innovation and Research Advisory Board (NIRAB) and cover advanced fuels, materials and manufacturing (including modularisation), advanced recycling for waste and a strategic toolkit compromising models and data that can provide evidence for nuclear policy making.

We agree with Dame Sue Ion, Chair of NIRAB, who said “The research will […] plug gaps in UK current activity [and] begin to equip our universities, national labs and industry with world leading skills and capability and act as a stimulus for national and international collaborative working”.

The increase in materials research is very welcomed as it will play an essential part in ensuring a nuclear renaissance. This is especially the case because future nuclear energy should and probably will move away from conventional (thermal) reactors towards different fast-spectrum reactors. In order to facilitate this, materials research will be important, because these reactors will operate in very different, high-neutron, environments.

The UK is well placed for nuclear materials research. Last year the UK Atomic Energy Authority opened the Materials Research Facility as a part of the wider National Nuclear User Facility (NNUF). This new facility is an important step in gearing up research into advanced materials essential for advanced nuclear technologies. NNUF is part of the UK Government’s Nuclear Industrial Strategy which seeks to provide greater accessibility to world leading nuclear technologies held by four nuclear centres around the UK. Increased materials funding also provides a good opportunity for the nuclear fission and fusion communities to further collaborate, something that we would regard as highly desirable.

Identifying and then implemented sustainable waste management practices is also essential. Waste is one of the main concerns of the general public. The risks of nuclear waste are often exaggerated, but it does need to be managed responsibly. £2 million of the funding announced is designated towards waste management. However, it seems that the UK Government is falling short of the innovative spirit it is seeking to reinvigorate. The funding released is conditioned, aiming to refine current reprocessing techniques (aqueous), rather than broadening its scope to include pyroprocessing and other, non-conventional approaches. (Early next year Weinberg Next Nuclear will publish a research report on nuclear waste management, outlining the need for a break with the status quo.)

The government is proposing research into different aspects of nuclear fuel. This is integral to the potential success of advanced nuclear energy. We very much welcome research into using plutonium as a fuel, since the UK has the largest stockpile of civil plutonium in the world. A broad approach is necessary, however due to waste management issues, we remain unconvinced about the suitability of coated particle fuels. It is also noteworthy that there is no reference to molten salts or metallic fuels, both widely used in cutting-edge nuclear reactors. This is regrettable and we hope that the UK Government in a near future will dedicate funding for further nuclear fuel research.

Whilst being a an important step in the right direction, this should only be first of many steps in the long journey that would see the UK re-emerging as a leading nuclear innovator. What we need is an ambitious research programme into a wide range of different technologies, especially those that has been deemed viable by the Generation IV Forum.

For further information about the funding, see here.

Weinberg’s response to the Industrial Strategy Consultation

Posted by Suzanna Hinson on September 29th, 2016

A commitment to industrial strategy is welcome, and must include sustainable development, decarbonisation and energy security at its core.

The debate on the extent of state involvement, in reference to climate change and sustainable development, is a valid one. However, the market is far from free. It would only be free if all externalities were included, but they are not. If there was a strong carbon price the government would be able to be less involved, but there will always be a need for some government intervention. Examples of this include research and development for industrial innovation that often requires initial government support.

The government must ensure that the Climate Change Act remains central. It has now been proven that the costs of action on climate change are far less than the costs of inaction (Stern review), with key industry and market leaders in agreement. The CBI says:

Ensuring that we maintain a secure, affordable and low-carbon supply is vital to British business. Additionally, we must continue to use energy more efficiently. The CBI is lobbying for government to provide a long-term, stable policy framework to enable continued business innovation and investment in the UK’s low-carbon transition.[1]

The Governor of the Bank of England Mark Carney said:

The combination of the weight of scientific evidence and the dynamics of the financial system suggest that, in the fullness of time, climate change will threaten financial resilience and longer-term prosperity. While there is still time to act, the window of opportunity is finite and shrinking. [2]

Christine Laggard, of the International Monetary Fund, agreed saying:

If climate change issues are not adequately addressed—if we keep running those nice energy subsidies, if the price on carbon is not adequately set, if policymakers dont have it on their radar screens—then financial stability in the medium and long-term is clearly at stake.[3]

It is thus essential that this significant threat to industries, markets, and the environment is mitigated.

The government also needs to accompany the targets on climate change with action by investing in future solutions. Research and development must continue to nurture infant industries that not only have the potential to benefit the UK’s energy and environmental security, but could also offer exciting new export potential. Initiatives like the Swansea tidal lagoon (a world first), advanced nuclear power including the SMR competition, floating offshore wind farms, Carbon Capture and Storage (CCS) and advanced bioenergy from algae are all great opportunities for the UK to pursue. Until externalities are internalised, low carbon energy industries will often require public financial support. The UK Government should provide this, where necessary, from taxes not consumer bills, and should also stop subsidies to unnecessary high carbon energy, including coal-fired power stations

An industrial strategy should be about developing new industries, whilst providing what existing industries need. Developing sustainable energy options not only consolidates the UK’s position in the growing green economy but also contributes to achieving affordable, sustainable and secure energy that is essential for existing industries. Some options, such as CCS, could give new life to declining existing heavy industry as a new report suggests[4] and development at already approved nuclear sites could help improve the rural economy in those areas. Combining heat and power provision through systems like district heating, also offer promising mutual benefits once the initial investment and development is made.

Industry needs security, but in the uncertainty wrought by the Brexit vote it also needs consistency. Blocking low cost, green solutions such as onshore wind, is unwise. A consistent approach should be used between energy sources. For example, if local communities are not allowed a veto vote over shale gas developments, they should also not be allowed a veto on wind farms. Whatever is decided on veto policy, it should be consistency across technologies.

Similarly, industry needs consistency over time. Regulatory stability and long-term agendas help investor confidence. One of the key mechanisms for delivering regulatory stability was EU membership. In the Brexit scenario that the UK now finds itself in, it is essential that a stable, consistent and long-term approach to policy is developed, to maintain confidence and ensure industrial progress.

The UK must also ensure it stays competitive and open to EU and global markets, whilst also maintaining its leadership in certain fields. One of these fields is emissions. The Industrial Emissions Directive, is a key policy that keep relationships with Europe strong whilst protecting our local and global environment. It is essential that that this, and other environmental initiatives are maintained and strengthened to allow the UK to continue to be a key part of Europe’s sustainable industrial future.

Finally, the UK should take inspiration from around the world. In the USA, Obama’s “all of the above” strategy allows security in energy to be achieved through variety of supply. Germany became a world leader in wind and solar development largely due to its Stromeinspeisungsgesetz law, ensuring a very attractive feed in tariff for renewables. This policy was so successful they now need to invest in storage and interconnection to integrate the renewables into a wider energy system. Sweden’s NUTEK created demand for new technologies with greater energy efficiency by technology procurement and government guarantees for market demands. By keeping abreast of these policy developments elsewhere, and future-proofing industry by investing in sustainability, the UK can ensure it continues to prosper.

A well-designed industrial strategy can propel the UK into a leading role in a number of policy areas, including energy, as well as provide some much needed clarity in the post-Brexit environment.





Working together to achieve Nuclear progress

Posted by Suzanna Hinson on August 31st, 2016

Earlier in the year, Weinberg Next Nuclear reported on the exciting GAIN initiative that the Obama administration launched to support nuclear progress in the USA. The companies chosen were X-energy and Southern Nuclear Operating Company. X-energy is working in a partnership to develop its Xe-100 pebble bed high temperature gas-cooled reactor whilst Southern’s partnership is pursuing the Molten Chloride Fast Reactor.

In August, these two companies announced that they will work together to further their projects. They have signed a memorandum of understanding to collaborate on development and commercialization of their respective advanced reactor designs.

As World Nuclear News reported, X-energy said its collaboration with Southern aims “to make available an additional nuclear solution that supports the global clean energy movement.” The X-energy CEO Kam Ghaffarian added, “We are thrilled to have Southern Nuclear involved in our project. I founded X-energy in 2009 out of a desire to make a significant and lasting contribution to clean energy generation in the US and around the world. This relationship firmly puts us on that path.”

Southern Nuclear chairman, president and CEO Stephen Kuczynski said, “Our relationship with X-energy builds upon the DOE awards we each received and puts the industry on a strong path to providing clean and safe nuclear enrgy for generations to come.” He added, “We understand fully the time and manpower it will take to bring the first advanced reactor to market and feel confident that pursuing this goal together will best leverage our combined research and commercial operation experience to do so.”

This partnership in the USA is a great step in the right direction and should help to realize the promise of an advanced nuclear future. However the future of nuclear power in the USA is in doubt with the upcoming election. Although Democratic candidate Hilary Clinton is an advocate of the “all of the above” approach of the Obama administration to tackle climate change, Republican candidate Donald Trump is a climate denier. Whilst Clinton has said “rapidly shutting down our nation’s nuclear power fleet puts ideology ahead of science and would make it harder and costlier to build a clean energy future”, Trump has said he supports nuclear power but favors gas, and now focuses more on promoting a coal regeneration. Energy is not a key debating issue in the US election, but there is potential for significant change based on the outcome, so it must be hoped US energy policy continues to be progressive and pro-nuclear innovation.

Russia leading the way in advanced nuclear power

Posted by Suzanna Hinson on August 15th, 2016

To effectively mitigate the climate threat, the world needs more nuclear power. The Intergovernmental Panel on Climate Change, International Energy Agency, UN Sustainable Solutions Network and the Global Commission on the Economy and Climate have all argued for a doubling or even trebling of nuclear energy to address climate change.[1]

Progress towards that expansion in many places has been sluggish; with big, old reactors meaning that neither the necessary quantity, nor the best possible quality of reactors is being developed.

However, Russia has just announced an ambitious target that will, if delivered, represent a significant step towards the necessary nuclear development. On the 9th of August, a Russian government decree has indicated country plans to build eleven new reactors by 2030. This does not include the seven reactors that Russia currently has under construction. In fact, Russia plans to have one new, large reactor come online every year until 2025.

As well as increasing quantity, Russia is endeavoring to improve the quality of the reactors. Among the 11 planned reactors are two sodium-cooled fast neutron (SFR) reactors.

The SFR is the most developed in the fast neutron spectrum, with successful projects and constructions across eight countries. Low-pressure liquid sodium is used to cool the core, and a very wide variety of fuel can be used, including waste from other nuclear reactors. The SFR uses a closed fuel cycle, where all the waste products are converted into more useful fuel or inert products, which eliminates the problem of nuclear waste.[2]

As advanced, 4th generation designs, these reactors could be cheaper, even cleaner and even safer. Russia already has an advanced reactor operating, the BN-600 fast breeder reactor at Beloyarsk has been supplying electricity to the grid since 1981 and has the best operating and production record of all Russia’s nuclear power units. An updated BN-800 fast reactor at Beloyarsk was connected to the grid in December last year and is expected to be increased to full capacity in the coming days.
This commitment to not only an increasing, but also an increasingly advanced nuclear fleet should be a model for the rest of the world. To mitigate climate change, it is essential that others follow.

[1] Intergovernmental Panel on Climate Change, Working Group III – Mitigation of Climate Change,, Presentation, slides 32-33; International Energy Agency, World Energy Outlook 2014, p. 396; UN Sustainable Solutions Network, “Pathways to Deep Decarbonization” (July 2014), at page 33; Global Commission on the Economy and Climate, “Better Growth, Better Climate: The New Climate Economy Report” (September 2014), Figure 5 at page 26.

Don’t worry: British nuclear doesn’t have all its eggs in one basket

Posted by Suzanna Hinson on August 11th, 2016

Hinkley Point may be taking all the attention at present, but it is not the be all and end all of nuclear power in the UK. There is plenty more in the pipeline so, whatever happens in Somerset, progress can be made elsewhere. The UK’s Office for Nuclear Regulation aims to complete Generic Design Assessments for new reactors, the AP1000 and Advanced Boiling Water Reactor (ABWR), during 2017.

NuGen, jointly owned by Japan’s Toshiba and France’s Engie, is progressing with plans to build an AP1000 at Moorside in West Cumbria. At present, they are carrying out site assessment surveys, including geophysical surveys, geological age dating and some borehole drilling work, which must be completed before construction can begin. AP1000 reactors, designed by Westinghouse, are being planned in multiple countries worldwide, with the first plants scheduled to come online in China this year. There have been some delays on these world-first reactors, but not as serious as those in France and Finland for the European Pressurised Reactor (EPR) proposed for Hinkley.

Horizon, owned by Hitachi, are also continuing with their plans for an ABWR at Wylfa on Anglesey. Site development work is progressing, with plans to begin construction in 2018/9 and start generation in the mid 2020s. A total of four ABWRs have been constructed, all in Japan, and all completed on time and on budget. Following Fukushima, all nuclear plants were shut down and no ABWRs have yet re-opened, but three are being reviewed for re-opening and having nearby seismic faults assessed. Japan also had two ABWRs under construction before Fukushima. Work was suspended but has since re-started on both sites.

These two projects are independent of Hinkley and should continue regardless of its fate. According to the Telegraph, a source close to the Horizon venture said “we know the government wants and needs nuclear to happen. All the questions over Hinkley, we’ve got answers to.” Neither of these reactors are currently reliant on Chinese finance. The Chinese investment is one speculated reason for the delay at Hinkley, with human rights and security both voiced as concerns. Additionally, neither of these projects are using a controversial EPR design, which has experienced delays and over-spends elsewhere.

In addition to these planned sites, there is also ongoing research and development into the next generation of advanced nuclear reactors. The Government promised, in Autumn 2015, an investment of £250 million over 5 years to develop the reactors of the future. This includes a competition to decide which small modular reactor or reactors should be demonstrated in the UK. Advanced reactors have the potential to be cheaper, even cleaner and even safer than current designs, and have added benefits such as the potential ability to use up spent fuel and the plutonium stockpile. (Weinberg Next Nuclear will soon be publishing a report on how to manage plutonium).

It is very important that the Government continues the advanced reactor programme and keeps nuclear as a priority in the UK’s clean energy mix. This will ensure the UK can benefit from safe, secure and sustainable nuclear energy for many years to come, regardless of decisions on Hinkley.

Our Summer Newsletter

Posted by Stephen Tindale on July 21st, 2016

The first half of 2016 has not exactly been stable in British politics.

In his March Budget the then Chancellor George Osborne announced a £30 million competition for Small Modular Reactors. This was in line with the recommendations in November 2015. But Osborne has now gone. The Department for Energy and Climate Change has been merged with the business department.  And no new nuclear capacity is being built: EDF have yet to make a Final Investment Decision for Hinkley.

Across Europe, nuclear energy is in decline. The European Commission and the nuclear industry itself expect nuclear to decline by a fifth by 2025. Switzerland is holding a referendum in November on whether to close existing nuclear stations early. An agreement between French socialist and green parties states that, if Flamanville becomes operational, another nuclear facility must be closed down.  Belgium has been formally committed to nuclear phase out since 1999, though the date of closing existing stations shifts according to who is in government.

A pro-nuclear civil society movement is needed to defend existing nuclear plants in these and some other countries. Such a movement is also needed to promote new nuclear, including advanced nuclear, in countries where the government is pro-nuclear, such as the Czech Republic, Finland, Poland and the UK.

The first article below is my suggestion of a progressive narrative for this civil society movement. Then comes an article by John Lindberg on why there is such strong anti-nuclear feeling in Germany. I do not think it would be worthwhile to spend time and resources arguing for nuclear in Germany – the nuclear argument has been lost there. But it is important for pro-nuclear campaigners to learn the lessons from Germany, so we can prevent other countries following Berlin’s example.

In the third article, I consider the state of energy policy in the UK and prospects for nuclear power.

If you would like to support or become involved in Weinberg Next Nuclear’s work, please get in touch.

Stephen Tindale, director


A progressive pro-nuclear narrative

Stephen Tindale

Nuclear energy is clean energy. It produces no air pollution or greenhouse gas emissions during operation. Reactors provides over half of European low-carbon electricity. But nuclear energy has a serious image problem. It is seen by many as too dangerous, too expensive and too old-fashioned to be part of the future. Solar is sexy, nuclear is not. As a result, nuclear energy is in decline across Europe.

It is quite possible to put together a statistics-based argument that nuclear power is clean. Fr example, the UK’s Parliamentary Office of Science at Technology finds that most estimates of nuclear’s lifecycle greenhouse gas footprint “fall below 26 gCO2eq/kWh”. Only large wind farms and run-of-river hydro have lower carbon footprints. Gas has a footprint of around 400, coal around 800. A think tank like Weinberg Next Nuclear needs to base its work on such studies: advocacy should always be evidence-based. But statistics are not inspiring to most people outside think tanks. Powerpoint presentations do not change the world. Alongside the facts and figures, we need a progressive narrative.

Pro-nuclear campaigners must not allow ourselves to be seen as defending the status quo or the energy establishment. If we allow that to happen, we will lose. Populist, anti-establishment political parties and movements are on the rise in many countries. A pro-nuclear movement must demand change, not just more of the same.

That does not mean we have to reject existing nuclear technologies. Before Fukushima, Angela Merkel spoke of nuclear as a necessary low-carbon bridge technology, to be used while Germany moves to become 100% reliant on renewables, which will take many decades. Merkel used the bridge metaphor as an argument against premature closure of Germany’s nuclear stations. This approach was clearly preferable to her post-Fukushima line of closing all nuclear by the end of 2022.

However, nuclear energy is more than just a bridge, because a goal of 100% renewable energy is not the best objective. Not everything renewable is low-carbon. If direct and indirect land use change are taken into account – as they ought to be – much bioenergy is not sufficiently low carbon to protect the climate. Bioenergy also produces air pollutants. In 2014 over half the renewable energy used in Europe was bioenergy.

Nuclear is a dense source of energy. This means that the physical and visual impact of nuclear is lower than that of, for example, wind or solar farms. More wind and solar farms are needed, but should not be constructed anywhere. Some biodiversity and landscape constraints are valid.

Wind, solar and hydro do not produce heat. Bioenergy can produce heat, but has the disadvantages mentioned above. Geothermal energy produces heat, but is only accessible in some locations. Much heat can be provided via electricity (increasing the need for low-carbon electricity). But not all industrial heat can be electric. Nuclear reactors produce heat, which could and should be used in industry. Switzerland is the leader in the use of nuclear heat; several central and eastern European countries also use nuclear heat, though the district heating systems used to transport the heat are communist-era and very inefficient.

Existing nuclear technology is good: clean, safe and reliable. Advanced nuclear – small modular reactors, molten salt reactors and fast reactors – will be even better. These reactors will be more flexible, so able to support intermittent renewables like wind and solar. They will almost certainly be less expensive to build than existing nuclear, because the designs are less complex.

We will not know the cost for sure until some have been constructed and operated. The nuclear industry has a history of promising cheap power (“too cheap to meter”) then delivering expensive power. Much better to under-promise then over-deliver.

What pro-nuclear campaigners can say is that a fleet of advanced nuclear reactors would help deal with spent fuel and plutonium, so substantially reducing the cost of waste management and disposal. Advanced nuclear could be part of an efficient resource economy, turning the legacy of past nuclear activities into an asset rather than a liability.

Advanced nuclear  should therefore be part of the long-term energy mix. With appropriate government support, some advanced nuclear designs could be commercially available within a decade.
However, this is where there is a need for a bridge technology. New nuclear facilities using existing reactor designs are necessary, to maintain or even expand nuclear’s proportion of the energy mix until advanced nuclear is commercialised and widely available.

Advanced nuclear technology should be an important part of the future energy mix. But other low-carbon energy sources will also be needed. The message of a pro-nuclear civil society campaign should not be that we need nuclear instead ofrenewables, but that we need nuclear and renewables.
The best form of energy is energy efficiency; ‘negawatts’. Much more must be done on this. But even if total energy use went down – which is not likely and not desirable given a growing global population and many millions needing more energy – demand for electricity would increase as heating and transport went electric.

So energy efficiency and all low-carbon power sources are needed. Weinberg’s next report, in the autumn, will set out the case for a clean energy alliance.

Progressive, pro-nuclear campaigners should:

  • promote advanced nuclear energy as part of the long-term low-carbon energy future;
  • support  technological innovation in order to deal with the legacy of past nuclear activities and produce reactor designs that are even better than existing reactors;
  • build a clean energy alliance and work alongside those promoting energy efficiency, wind, solar, marine energy, geothermal and carbon capture and storage.
Nuclear Metamorphosis: How we learned to start worrying and fear the reactors
John Lindberg
Nuclear power has for quite some time suffered from very poor public relations. Connotations are in most cases negative, with death and destruction frequently being associated with nuclear. The notion of a technology that is mere steps away from causing a nuclear explosion is widespread. These are all misconceptions about nuclear power, which is one of the safest sources of energy. But most arguments made by proponents of nuclear power about its benefits fall on deaf ears. Given this predominantly hostile environment, one might even draw the conclusion that nuclear power as a venture  should be scrapped, because  other forms of energy production would be less controversial.However, the realities of climate change are upon us and a source of low-carbon emission energy is desperately needed that can replace coal and gas for baseload generation, for the cloudy and windless days. So how did nuclear power end up in this situation?

Harnessing the immense power of the atom began as a military venture, and the very word nuclear stirs up ambiguous connotations. The original purpose of nuclear reactors – supplying materials to nuclear bombs – created a powerful legacy of dualism. Nuclear had a dual nature, either as a peaceful reactor providing bountiful clean and stable electricity, or as a potential bomb factory. The early years of civilian nuclear power were filled with optimism about the future, as nuclear promised a virtually limitless energy source.

The 1960s represent the beginning of a watershed in nuclear energy in terms of public perception. During the late 1950s and early 1960s, the number of atmospheric nuclear weapons tests steadily increased, with the fallout from these tests becoming a considerable source of public anxiety. Imagery was created portraying radioactive particles as ‘death dust’ that, regardless of its original source, posed a risk. Public pressure became significant until the signing of the Partial Test Ban Treaty in 1963.

After this treaty, ‘the public view of nuclear energy [underwent] a dramatic and unexpected metamorphosis.’ The fallout controversy led to an increased focus on the supposed dangers of radiation. Concerns about nuclear weapons –  the risk of technological errors that would accidentally lead to either a nuclear detonation or, worse still, nuclear war – were successfully transferred by the anti-nuclear movement which transferred to nuclear power.

Once the imagery and emotions had been transferred, it needed cementing, to create a lasting connection. The accident at the Three Mile Island nuclear power plant presented such an opportunity for the anti-nuclear movement. The public worldwide followed the developments closely, and the situation played straight into the narrative of a technology out of control. This was further amplified by the fear that the reactor itself could explode, with similar consequences of a nuclear bomb. Whilst this risk was later found to have been greatly exaggerated by media and poor communication, the anti-nuclear movement successfully seized the moment. Nuclear power had, at least in the US, completed its journey from a saviour to a potential bringer of death.

This transformation of public opinion struck Europe a few years later, a fateful night in 1986. The Chernobyl disaster, the worst nuclear accident we have ever seen, came to be seen as a final watershed. The death toll from radioactive exposure from the accident is by, for example, Greenpeace claimed to be as high as 200,000. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has repeatedly rejected numbers of this magnitude, with its chair Lars-Erik Holm calling them “unsubstantiated statements that have no support in scientific assessments”. The notion of mass death, as incorrect as it is, amplified the sentiment of a very dangerous technology, running out of hand. It also increased  fear of radiation.

News reports covering the accident amplified the nuclear fear that already existed. German, American and other Western media outlets widely used graphics from Chernobyl, graphics that frequently would explode. Imagery related to nuclear war was also used. The packaging efforts by anti-nuclear activists attempted to highlight the links between nuclear power and nuclear weapons, which is essential for any fear extension to take place. An excellent example of such packaging is given by Joschka Fischer, former German Vice Chancellor and leading figure of the (West) German Green movement, who states that every nuclear reactor is a potential nuclear bomb. This and the atomic ‘angst’ in Germany were further increased by the usage of ‘atomic cloud’ imagery. The cloud referred to was the radiation that was being spread from the damaged reactor, spreading nuclear fission material across the world. This notion of a cloud taps into the fears of radiation originally connected with nuclear weapons fallout.

By appealing to the fear that this evokes, the fear extension – creating the connections between nuclear weapons and nuclear power in terms of emotions and imagery – is easily made. The fear that Chernobyl’s fallout cloud generated should not be underestimated. It has had significant long-term ramifications that have come to cement the fear of nuclear, in particular accidents. The tremendously popular children’s novel ‘The Cloud’ by Gudrun Pausewang has come to play an important role regarding how Chernobyl is remembered in Germany. The scenes of an invisible killer, mass death, and widespread panic have created a lasting impact in terms of collective memory. Similar developments are seen across the world.

Challenging fear is never an easy task But on this occasion the stakes are too high to ignore. As proponents of nuclear power, we need to dismantle long established and commonly held prejudices. We need to challenge the lies, but more importantly, spread a message of hope and show how nuclear power offers a serious challenge to a failed fossil fuel status quo, a status quo that slowly is pushing humankind towards the edge.

John Lindberg is a MA Climate Change student at King’s College, London. He  is the former UK representative and Secretary-General of the Young European Council’s Energy and Climate Action Committee. Before moving to London he read Politics at the University of Glasgow and worked as policy adviser to former MSP Sir Jamie McGrigor.

We are the UK’s only charity advocating for safer, cheaper and cleaner next-generation nuclear energy. We have accomplished a lot with our small team and are eager to do more. Now we urgently need your support to build on the legacy of Dr. Alvin Weinberg to build a better, cleaner and more sustainable future.


New British government: a step forward for climate strategy
Stephen Tindale

The UK no longer has a department with the words ‘climate change’ in its title. Climate policy is now the responsibility of a new Department of Business, Energy and Industrial Strategy. This could be seen as a downgrading of climate action – and has been condemned by some green groups. But I think it is a step forward.

Before 2008 energy policy had been the responsibility of the Department of Trade and Industry, and climate change dealt with by the Department of Environment, Food and Rural Affairs (Defra). So different parts of the ‘energy trilemma’ – economic, social and environmental – were in different departments. The economic argument usually trumped the decarbonisation debate. The social part tended to get overlooked.

Before this month’s reshuffle there was some speculation that new prime minister May would return to this arrangement. She has not, which is a relief. Defra is not a powerful department within Whitehall. And climate change is not just an environmental issue: it affects health, the economy, foreign policy and much more.
DECC was also not a strong Whitehall department. During the 2010-15 coalition government, many Tories came to resent DECC as ‘a Lib Dem fiefdom’. After 2015 general election, there was a Tory DECC secretary, but DECC’s staff numbers were slashed, and many of the best officials left.

The new Department of Business, Energy and Industrial Strategy is likely to be stronger than DECC was. Its first secretary of state, Greg Clark, is an excellent appointment. He is clearly on the left of the Conservative party; indeed he was a Social Democrat activist while at university. He was an effective shadow DECC secretary before 2010, taking a pragmatic approach and being willing to listen and learn.

Clark’s new department is in charge of industrial strategy. Lib Dem Vince Cable spoke about industrial strategy when he was running the business department 2010-15, but his Tory successor Sajid Javid did not, wanting to leave pretty much everything to the market. An industrial strategy is necessary in order to deliver decarbonisation. If one thinks that names of departments matter (which I don’t particularly), having industrial strategy in the name of a strong department is more important than having climate change in the name of a weak one.

However, the new business department will only succeed if it is supported by those at the top of government. New Chancellor of the Exchequer Philip Hammond gave some strong speeches on climate change in his previous role as Foreign Secretary, highlighting the economic and security advantages of leading the decarbonisation effort. For example, in November last year he said:

“I do not accept that we have to choose between our future prosperity and safeguarding the future of our planet. This is not a zero sum game. As Conservatives, we choose both.”

New prime minister Theresa May has not been much involved in climate discussions: there is no great overlap with her previous portfolio of home affairs. But Carbon Brief has helpfully found two quotes. In December 2008 she said:

 “I am thrilled to see that after years of Conservative pressure, we have finally passed a necessary and ambitious piece of legislation on Climate Change. Britain is the first country in the world to formally bind itself to cut greenhouse emissions and I strongly believe this will improve our national and economic security. To stay reliant on fossil fuels would mean tying ourselves to increasingly unstable supplies which could endanger our energy security and the Climate Change and Energy Bills mark an important step for both the health of our economy and the health of our nation. It is now vital that we stick to these targets”

So the new prime minister accepts the need to move away from fossil fuels. Does she think that new nuclear reactors should be part of this move? That is less clear. In July 2006 she said:

“I welcome that the Government has responded to cross-party pressure to make it easier for homes in Maidenhead [May’s constituency] and across the country to install renewable energy like solar panels or mini-wind turbines. Where the Government offers positive, constructive and reasonable policies, they will have my support. But the Government could do far more to promote green energy, rather than giving unfair subsidies to new nuclear power stations.”

Does May regard all nuclear subsidies as unfair? Conservative party policy is pro-nuclear, mainly on energy security grounds. Clark is pro-nuclear. Hammond said on his first day in office that Hinkley will go ahead.

However, last week the UK’s public spending watchdog, the National Audit Office (NAO), published a report on Nuclear Power in the UK. While noting that much new generating capacity is needed in the UK, the report states that:

“There are particular value-for-money considerations for nuclear power compared to other generating technologies. The government is offering longer-term CfDs [Contracts for Difference] for new nuclear investment than other low-carbon technologies, reflecting the longer payback periods for nuclear power stations. This adds to price certainty for consumers but increases the risk that they do not benefit as much from any long-term changes, such as technological advances that reduce the cost of other low-carbon sources. The greater complexity and risk of nuclear power projects also could lead investors to require a higher return than for other low-carbon technologies.”

This complexity and financial risk applies to all nuclear pojects. But NAO also raises particular concerns about Hinkley Point C (HPC):

“With CfDs, taxpayers are not exposed to project risks such as cost overruns during construction. However, as part of the government’s deal for HPC, HM Treasury has provisionally agreed to guarantee up to £2 billion of bonds that NNBG [the partnership between EDF and Chines estate-owned nuclear companies] will issue to finance HPC’s construction repayable by NNBG’s shareholders in 2020. If the shareholders fail to repay and the government’s guarantee is ever called, or if the developer manages to negotiate further guarantees that are called, the funds required would be drawn from government budgets. Additionally, the HPC deal includes a Funded Decommissioning Programme, whereby the Department stipulates an amount that NNBG must set aside to cover decommissioning costs. The government will be liable for any decommissioning costs above the amount NNBG sets aside.”

As well as financial concerns, some have expressed national security concerns about Chinese involvement in UK nuclear infrastructure. May’s new joint chief of staff, Nick Timothy, has written that the Chinese might use this to build weaknesses in computer systems:

“For those who believe that such an eventuality is unlikely, the Chinese National Nuclear Corporation – one of the state-owned companies involved in the plans for British nuclear plants – says on its website that it is responsible not just for ‘increasing the value of state assets and developing the society’ but the ‘building of national defence’.”

Given May’s past comments about “unfair” subsidy, Timothy’s attitude to Chinese involvement and the recent NAO report, it is now likely that the Hinkley project will be seriously questioned – as it should be in my view. The European Pressurised Reactor, the design being built in France and Finland and proposed for Hinkley, is very complicated and so very expensive. Other existing nuclear options are less complex and so would require less subsidy.

All new nuclear facilities might well require more subsidy than renewable energy facilities. However, the UK is legally obliged, under the 2008 Climate Change Act, to meet carbon budgets. May has said, as quoted above, that it is vital to stick to these targets. To his credit, David Cameron found time in his last fortnight as prime minister to accept the advice of the Committee on Climate Change that the budget for 2028-32 should be 57% below 1990 emission levels. So the appropriate question for nuclear subsidy is not whether this is higher or lower than subsidies to other technologies, but whether it is possible to meet the carbon budget without new nuclear.

As the late David MacKay argued so effectively in Sustainable Energy – without the hot air, it is much more practical to include nuclear as part of the energy portfolio, and the carbon budgets are much more likely to be met. Size matters as well as cost. Cheaper options should be supported – including onshore wind which the Conservatives have stopped subsidising. But new nuclear must be part of the mix.

© The Alvin Weinberg Foundation 2014
The Alvin Weinberg Foundation is a registered UK charity. Charity number: 1155255
The Alvin Weinberg Foundation web site uses cookies to record visitor patterns.
Read our data protection policy

Design by Tauri-tec Ltd and the Alvin Weinberg Foundation