Archive for the ‘Waste’ Category

South Australia could provide a long term solution to nuclear spent fuel

Posted by Stephen Tindale on February 22nd, 2016

by Priya Aggarwal

A Nuclear Fuel Cycle Royal Commission was set up in March, 2015 to independently look into South Australia’s potential future role in four prominent areas of the nuclear fuel cycle – exploration and extraction; processing of minerals and manufacture of materials containing nuclear substances; electricity generation from nuclear fuels; and, management, storage and disposal of radioactive waste. The commission will have to submit a final report by May, 2016 after considering the following:

     the effect on the environment;

     safety;

     the effect on other sectors of the State’s economy, in particular the tourism, wine and food sectors; 

     technical issues.

South Australia (SA) is currently home to four of Australia’s five uranium mines, and the possibility of the state developing nuclear power generation, enrichment and waste storage facilities have hitherto been contentious issues. The Royal Commission comes at a time of economic contraction for SA, which is suffering from job losses in mining and manufacturing sectors.

Since the commission saw no opportunity to commercially develop further uranium processing capabilities as it says the market is already oversupplied and uncertain, it sees SA could benefit from forging contracts with those that buy its uranium to store the waste products as well, as part of a concept entitled “fuel leasing”. Kevin Scarce, the Royal Commissioner, said the timeframe of building a deep geological disposal project would take 30 years, based on the timeframe it took for Sweden and Finland, who currently store their own waste at present (but, Sweden intends to receive waste from further afield) to set up similar successful projects buried 400 to 500m underground. While avoiding the nomination of a site for nuclear waste, the inquiry found the “likely” development of a storage and disposal facility of used nuclear fuel could be operational in the late 2020s.

Mr Scarce said SA could take 13% of the world’s nuclear waste and had unique characteristics that made it suitable, such as a stable geology and relatively stable seismologically. He feels confident about tapping the market’s potential in this segment and says, “Mind you, we’ve had waste now for 50 to 60 years and there has not been an international solution yet.” After revealing the tentative findings, a consultation period has now begun.

 

Referneces-

http://www.world-nuclear-news.org/NP-Waste-disposal-offers-opportunity-to-South-Australia-1502164.html

 

http://yoursay.sa.gov.au/decisions/royal-commission-our-role-in-nuclear-energy/about

 

http://nuclearrc.sa.gov.au/tentative-findings/

 

Edit: Post previously included the line “The government also faces the task of convincing the locals at six shortlisted sites, of which three are in SA.” which was deleted as it is a separate and mostly unrelated issue.

 

 

 

Why I have joined the Alvin Weinberg Foundation

Posted by Stephen Tindale on June 4th, 2015

“I cannot really complain too much about solar utopians: their dreams are noble and ought to be encouraged. On the other hand, when these dreams of solar utopia are used as political instruments to eliminate the nuclear option, I believe it is most important to object.”

Alvin Weinberg, ‘Toward an acceptable nuclear future’, 1977.

I am a former renewable energy utopian – though, since I live in the UK, I am more excited about wind power than I am about solar. I spent 20 years campaigning against nuclear, the last 5 of them as head of Greenpeace UK. I protested outside nuclear power stations. Then I realised that I had been wrong; that renewable energy cannot expand quickly enough to phase out fossil fuels and protect the climate. I concluded that opposition to nuclear power is not compatible with any attempt to control climate change. And, because many of my former colleagues in green groups were continuing with anti-nuclear campaigns, I too felt that it was important to object. So for the last 6 years I have been speaking out in favour of nuclear power, and was delighted last month to start working for the Alvin Weinberg Foundation.

Alvin Weinberg was not only a world-renowned nuclear scientist, but also one of the world’s first climate campaigners. He warned of the dangers of increased carbon dioxide concentrations in the 1970s; over a decade before James Hansen’s historic Congressional evidence in 1988. (That is not in any way intended to downplay Hansen’s immense contribution to climate science or, indeed, to campaigning.) Weinberg also spoke out against the dangers of technology tribalism. We need to use every tool to mitigate the climate and energy crises. We do not need nuclear or renewables; we need nuclear and renewables. That is even more strongly the case today in 2015 than it was in the 1970s.

In the 1977 paper quoted above, Weinberg speaks of the need “to set the nuclear ship back on course”. Thirty -eight years later, it definitely needs to be set back on course again, particularly in Europe. The European Pressurised Reactor (EPR) that is supposed to be constructed in the UK may well get abandoned; EDF have not yet taken a final investment decision, and the EPRs being built in France and Finland are well over time and over budget. The latest in a long line of problems is that Areva have used the wrong type of steel at the EPR site in France, and the steel is already encased in concrete.

The EPR is a very complex design. Other existing nuclear reactor designs (so-called generation 3 or 3+) are less complex and need to be built, because they are proven, demonstrated and ready to go. However, more advanced designs must also be researched, developed and demonstrated. This should include both Integral Fast Reactors and Molten Salt Reactors (MSRs), the technology which Weinberg himself pioneered at Oak Ridge in the 1960s. MSRs have many potential benefits over current nuclear reactors:

* The plant can operate at near atmospheric pressure. The fuel salt used in MSRs has no chemical reactivity with air or water. So MSRs cannot explode.

* The liquid salt returns to a solid form at ambient temperatures. This, combined with installed passive safety systems, would automatically shut down advanced reactors avoiding future situations like  Fukushima and Chernobyl.

* Some advanced reactors could be fuelled by existing nuclear waste from conventional nuclear reactors. This ‘waste’ still contains over 90% of the energy that was in the uranium, so can be used many times as fuel. At the end of the process these advanced reactors would still produce some waste, but much less by volume than the waste produced by a conventional nuclear plant.

* Certain next-generation reactors can use plutonium as fuel. The UK has the world’s largest stockpile of plutonium, a result of two decades of reprocessing and failure to use mixed-oxide (Mox) fuel.

* Advanced reactors could be very fuel efficient – up to 75 times more electricity per ton of fuel than an out-dated conventional light-water reactor.

*Next generation reactors could be designed to be small and modular (producing up to 300 megawatts) which would suit power needs in remote locations. Compact versions of MSRs could be built in a central factory and assembled on site. This would reduce costs.

* Modular reactors could be constructed adjacent to industrial sites so that waste heat from the reactor could be used for heat-intensive processes such as desalination or the production of aluminium, cement, ammonia and synthesised fuels.

* Some advanced reactors are ideally suited to the sustainable production of medical isotopes, used for scans and to treat cancer. These isotopes are currently in short supply.

* Most next generation reactors would use approximately 97% less water than conventional nuclear reactors.

The Alvin Weinberg Foundation is committed to highlighting these benefits, to politicians and the public, and seeing the potential of advanced nuclear power realised. There are companies seeking to build prototype MSRs in the UK. If the EPR is abandoned, a sensible reaction by the new British government would be to support an advanced nuclear technology demonstration project in the UK.

Molten Salt Reactors in Highgate

Posted by Laurence Watson on September 25th, 2014

A view of Highgate by John Constable [Public domain] via Wikimedia Commons

A view of Highgate by John Constable [Public domain] via Wikimedia Commons

The Highgate Literary and Scientific Institution has been the cultural of heart of Highgate Village in north London since it was founded in 1839. It hosts lectures and events on literature, politics and… next-generation nuclear technology.

I was very pleased to represent The Alvin Weinberg Foundation and speak to members of the HLSI and the public about the possible futures for nuclear energy. This included an outline of our favoured design, the Molten Salt Reactor and its various benefits and differences with respect to current technology, as well as some discussion around thorium as a nuclear fuel.

The questions ranged from the more technical, such as how does one maintain criticality with a liquid fuel (answer – the same as with solid fuel, by the configuration of your fuel channels, or tubes such that there is enough nuclear material in one place to achieve criticality), to the amount of waste produced by a Molten Salt Reactor (answer – far less than with a conventional one!). As is often the case, many people by the end asked why, if all the benefits are true, we are not yet using these technologies?

The history of the MSR, the development of the nuclear industry, and subsequent dismantling of our research base provides some of the answers. The challenges to bring these concepts to market are large, but we have the capability to do it. The audience, I hope, were left with a new enthusiasm for a brighter future for nuclear energy and for the solutions needed to decarbonise our world as quickly as possible.

Transatomic Power publishes details of MSR concept

Posted by David Martin on May 20th, 2014

Transatomic Power

Back in 2012, we blogged about Transatomic Power (TAP), a Boston-based start-up aiming to design what they call a Waste Annihilating Molten Salt Reactor (WAMSR). TAP have now released a technical white paper which provides greater detail about their reactor concept.

The paper reveals that their 520MWe MSR concept makes use of a zirconium hydride moderator combined with a lithium fluoride fuel salt. This innovative combination would enable the reactor to run on spent nuclear fuel, or fresh low-enriched uranium, thus providing both a high level of proliferation resistance and an efficient way of consuming existing nuclear waste. TAP also suggest that the use of hydrogen-dense zirconium hydride as moderator, instead of graphite, will reduce the size and cost of the reactor vessel.

Like all MSR concepts, TAP’s reactor offers very high fuel burn-up, up to 96%, and a range of passive safety features. TAP believe that their reactor could be constructed for just $2 billion per plant, with a 3-year build time.

This is just one of many exciting MSR concepts being developed around the world. As others have reported, start ups are now home to some of the boldest innovations in nuclear energy. For more information on other MSR projects worldwide, see our world map.

We’ll be following TAP’s progress with great interest. Check out the technical white paper here.

NuScale OnTruck ChenectedAichieOrg

Alternative nuclear rolled ahead a bit this week, as the U.S. DOE agreed to fund NuScale’s small modular reactor, transportable on the back of a truck.

The U.S. Department of Energy has taken another “small” step toward shaking the nuclear industry out of its uninventive ways and towards innovative reactors that augur lower costs and improved operations and safety for a low CO2 future: It has granted up to $226 million in funding to an Oregon startup that is developing a “small modular reactor.”

The award to Corvallis, Oregon-based NuScale Power marks the second tranche of a $452 million program that DOE announced in March 2012. It comes a year after DOE’s first grant to North Carolina-based Babcock & Wilcox. That grant was reported at up to $225 million at the time, although DOE told me today that it has so far committed $101 million to the five-year B&W project through March 2014 and that it is currently reviewing the release of additional funds.

“Small modular reactors represent a new generation of safe, reliable, low-carbon nuclear energy technology,” U.S. Energy Secretary Ernest Moniz said in announcing the award to NuScale. “The Energy Department is committed to strengthening nuclear energy’s continuing important role in America’s low carbon future.”

SHRINKING CONVENTION

Like B&W, the NuScale design calls for a scaled-down conventional reactor, fueled by solid uranium, cooled by ordinary water and operated in a pressurized environment. By virtue of its smaller size, the NuScale “Integral Pressurized Water Reactor” (IPWR) portends lower costs because in principle it could be factory-built in more of an assembly line manner than could large conventional reactors; the idea is to ship them to a site via truck, rail or barge for final assembly. The “integral” design fits a reactor and a steam generator in an 80-foot by 15-foot cylinder.

The small size would also allow users such as utilities to purchase new reactors in less expensive increments rather than paying billions of dollars up front for conventionally sized reactors, which reach well over a gigawatt in electrical capacity. At 45 megawatts electric, the NuScale reactor provides about 3 percent the output of a 1.3-GW reactor. NuScale’s “modular” design permits up to 12 of the pressurized water reactors in a plant, for a total capacity of 540 MW.

NuScale, founded in 2007, has designed the IPWR to sit underground, thus protecting it from attack. The IPWR deploys a “passive cooling” system that would release a pool of water from above the reactor in the event of an emergency, rather than rely on pumps to circulate water (failed auxiliary electricity systems knocked out cooling at Japan’s Fukushima reactor, leading to meltdowns there).

EYEING IDAHO

NuScale partner Energy Northwest, a Richland, Wash. company that produces power for utilities, said that NuScale could develop a commercial six-to-12-reactor plant on the site of Idaho National Laboratory by 2024, which Energy Northwest would have the right to operate. Utah Associated Municipal Power Systems, a cooperative of government entities that pools electrical power resources, is also part of the scheme.

U.K. engineering stalwart Rolls Royce is also part of the NuScale small modular project. NuScale is majority owned by $27.6 billion engineering company Fluor Corp., based in Irving, Texas.

The presence of several companies in the NuScale project echoes the B&W small modular reactor venture which won the first tranche of DOE’s $452 million in SMR funding. B&W is working with U.S. construction firm Bechtel, and with federal power provider Tennessee Valley Authority. They hope to deploy four 180-MW reactors at TVA’s Clinch River, Tennessee site, via a joint venture called Generation mPower that is 90 percent owned by B&W and 10 percent by Bechtel.

That project took a peculiar turn recently, when B&W said it plans to sell 70 percent of its interest in mPower – including intellectual property.

A DOE spokeswoman said that DOE has so far committed $101 million to B&W through March, 2014. Possible further funding is currently under review, she said. B&W’s five-year federal funding period began in December, 2012. If DOE released more funds, the total would not exceed $226 million, the same five-year cap on the NuScale funding, which runs through Dec. 2018. In both cases, DOE would also be limited to funding no more than half of project costs, the spokeswoman said. She added that there will be no more grants under the $452 million Funding Opportunity Announcement (FOA).

CAN’T TAKE THE HEAT

While the DOE grant helps to push U.S. nuclear in a new direction of smaller and less expensive reactors, it stopped short of endorsing altogether new reactor designs that would support much higher operating temperatures.

These so-called “fourth generation reactors” include liquid fuel reactors known as molten salt reactors, as well as solid fuel reactors using “pebble bed” and “prismatic” fuel structures rather than conventional rods.  They would provide many additional advantages. For instance, they typically operate in unpressurized environments, which is a safety benefit over today’s pressurized reactors. They tend to leave less long-lived waste.

At higher temperatures they also generate electricity more efficiently, which lowers generating costs and would help nuclear compete in a market where natural gas prices are currently low. Unlike natural gas generation, nuclear power generation is carbon free, and the nuclear lifecycle is low-carbon.

And as Secretary Moniz himself noted last month, high temperature reactors could serve as sources of low-carbon heat for industrial processes and thus expand nuclear power beyond its role of generating electricity.

A number of high temperature reactor developers vied for the DOE award that went to NuScale, including San Diego’s General Atomics, and X-Energy Inc., a Greenbelt, Maryland-based company that is developing a pebble bed reactor based on older South Africa designs.

Stay tuned to the Weinberg site as we delve into some of these alternative reactor designs in our upcoming blog posts.

Photo is from NuScale via ChenectedAiche

Cancel the Chattanooga Choo Choo. Assistant Energy Secretary Pete Lyons called off his trip to Tennessee's Oak Ridge National Laboratory when the government shut down last month. He's pictured here on an ORNL visit earlier this year, but not one relating to the advanced nuclear collaboration with China.

Cancel the Chattanooga Choo Choo. Assistant Energy Secretary Pete Lyons called off his trip to Tennessee’s Oak Ridge National Laboratory when the government shut down last month. He’s pictured here on an ORNL visit earlier this year, but not one relating to the advanced nuclear collaboration with China.

Those of you who object to the U.S. sharing advanced nuclear reactor designs with China might snigger at this news. Those of you who support the collaboration will find it dismaying: Last month’s U.S government shutdown forced the Department of Energy to cancel a rare high level meeting with China regarding the two nations’ ongoing partnership in molten salt reactor development.

But while the collaboration’s bosses failed to meet for the key appointment, the roster of U.S. contributors has been expanding to include additional universities and industrial members, such as Bill Gates’ nuclear company TerraPower.

According to people familiar with the situation, DOE Assistant Secretary Peter Lyons was due to travel to Tennessee’s Oak Ridge National Laboratory in October to meet with the project’s Chinese co-leader, presumably Jiang Mianheng. Lyons and Jiang were the two co-chairs of the collaboration when it began in Dec. 2011.

With the itineraries set and with sensitive travel visas in place for Jiang and his Chinese delegation, something happened on the way to Tennessee: The U.S. government closed its doors for two weeks when Congress failed to agree on general budgetary appropriations.

The shutdown took out all manner of government operations including national energy labs such as Oak Ridge (ORNL), where in the 1960s the U.S. built a molten salt reactor, the designs for which are part of the DOE/China advanced reactor partnership.

I’ve sent several emails to Lyons and to a DOE spokesperson asking whether Lyons and Jiang have rescheduled, but they have not replied. Around the time that DOE and the Chinese Academy of Sciences (CAS) entered the agreement in December, 2011, Jiang was the president of CAS’ Shanghai branch. He is the son of China’s former president, Jiang Zemin.

PASSING THE SALT

The two countries are sharing information related to a molten salt cooled, solid-fuel reactor that would safely operate at high temperatures and thus serve as a more efficient electricity generator than today’s “cooler” conventional reactors, and that would also serve as a valuable source of clean industrial heat, replacing fossil fuels. The reactors also portend safety, waste, and proliferation advantages over traditional nuclear.

China plans to build a prototype of a 2-megawatt “pebble bed” reactor by around 2015, and a 100-megawatt demonstrator by 2024.

It is also planning to build a reactor that is both cooled and fueled by liquid salts – a “molten salt reactor” (MSR). It plans a 10-MW prototype by 2024.  DOE has said that the collaboration only entails salt-cooled technologies, and is not specifically exploring MSRs, which many experts regard as a logical and superior next step after the development of a salt-cooled reactor.

Jiang has expressed intentions of using high temperature reactors not just to feed the grid with electricity – cleanly powering future fleets of electric cars –  but also to provide heat for processes like hydrogen production (he wants to then turn the hydrogen into methanol) for coal gasification, and to turn coal into products including olefin and diesel.

Earlier this month, U.S. Energy Secretary Ernest Moniz told a nuclear conference in Irvine, Calif. that the U.S. could have similar uses for high temperature reactors.

“Small modular reactors, especially high temperature ones, may have a particular role there essentially as heat sources,” Moniz told delegates at the Future of Advanced Nuclear Technologies gathering organized by the National Academy of Sciences and the Keck Futures Initiative. He outlined a number of possible applications, including “process heat, water desalination, hydrogen production, petroleum production and refining.”

CONVENTIONAL WISDOM

Moniz told the conference that he recently traveled to China to help promote the Westinghouse AP1000, a conventional reactor with improved safety features, designed by Westinghouse, the U.S. subsidiary of Japan’s Toshiba. There are currently four AP1000s under construction in China, with more planned. Westinghouse and China are co-marketing AP1000 reactor technology beyond China.

At the Irvine gathering, Moniz did not mention the DOE/China high temperature reactor collaboration.

He also did not provide any details on how the U.S. might beef up its commitment to advanced reactor development; when I asked him, he would say only that he hopes to “marshall” resources. By comparison, China’s commitment is much more significant and multifaceted. It is backing the molten salt project at CAS  – just one of China’s several advanced reactor projects – with about $400 million, and hopes to produce a prototype as soon as 2015.

DOE has provided $7.5 million in funding to three universities – MIT, the University of California Berkeley, and the University of Wisconsin – for advanced reactor development, with a focus on molten salt cooled, solid fueled designs.  Those three universities plus ORNL were seminal members of the DOE/China collaboration, and Westinghouse has been advising them on how to eventually commercialize their technology.

Researchers from those entities and from China have met for four separate collaborative workshops over the last two years, my sources tell me. Those gatherings have not included chairmen Lyons and Jiang. A fifth workshop is planned for January, at UC Berkeley.

OPENING THE GATES

Meanwhile, the core group of workshop participants has grown to include TerraPower, the Seattle company chaired by Gates which has been widening its nuclear net.  TerraPower continues with its original mission to develop a fast reactor that it calls a traveling wave reactor, but has encountered a few technical snags and is now investigating other possibilities as well including molten salt reactors and thorium fuel.

Other new participants have included San Diego-based General Atomics which is developing a high temperature solid fuel, helium-cooled reactor that it calls the Energy Multiplier Module (EM2). From academia, the Georgia Institute of Technology, the University of Michigan, Ohio State University and the University of New Mexico have also joined the workshops.

General Atomics has submitted its EM2 as a candidate for the second tranche of DOE’s $452 million award for small modular reactors — reactors that are smaller than today’s gigawatt-plus behemoths and portend significant costs savings. Most advanced high temperature reactors are suitable for small modular form, with sizes ranging from around 30 MW to around 500. GA is competing against other high temperature reactor makers for the award, including X-Energy. Conventional temperature machines are also in the hunt, including one from Westhinghouse and another from Corvallis, Ore.-based NuScale.

A year ago DOE awarded the first tranche, of around $225 million, to Babcock & Wilcox for its mPower reactor, a scaled down version of an ordinary temperature conventional reactor. B&W announced earlier this month that it needs to sell a 70 percent stake in the joint venture company developing mPower in order to continue.

Photo is from U.S. government via Flickr

U.S. energy secretary: Deploy nuclear for industrial heat

Posted by Mark Halper on November 22nd, 2013

Moniz OakRidge Y12

Hot on nuclear. Secretary Moniz says that advanced reactors could furnish clean industrial heat. He also backs President Obama’s point that new and safer nuclear improves energy security and reduces proliferation risks. The Y12 sign in the background reminds us of the proliferation connection. Y12 is a defense related unit at DOE’s Oak Ridge facility, where Moniz spoke in this June photo.

IRVINE, CALIF. – The notion that nuclear reactors could provide clean, CO2-free heat for industrial process – and thus expand nuclear power’s role beyond electricity generation – got a big boost here when U.S. Energy Secretary Ernest Moniz endorsed the idea.

Speaking via a video link last Friday to a nuclear power and medicine conference, Moniz said that reactors currently under development – often called “advanced” or “fourth generation” reactors and typically small in size – could safely operate at much higher temperatures than conventional models and would be key to broadening nuclear’s role.

“Small modular reactors, especially high temperature ones, may have a particular role there essentially as heat sources,” Moniz told delegates at the Future of Advanced Nuclear Technologies gathering organized by the National Academy of Sciences and the Keck Futures Initiative. He outlined a number of possible applications, including “process heat, water desalination, hydrogen production, petroleum production and refining.”

At the moment, the U.S. lags behind at least one country, China, in supporting the development of advanced reactors such as molten salt and pebble bed reactors. Jiang Mianheng, who heads the development of molten salt reactors (MSRs) in China (Jiang is the son of China’s former president Jiang Zemin), has stated that China plans to use them for hydrogen production, gasifying coal, methanol manufacturing and other purposes. China recently released revised timelines for two of its high temperature reactors. It hopes to build a 2-megawatt pilot pebble bed by around 2015, and a 100-megawatt pebble bed demonstrator by 2024, among others.

SMALL HANDOUTS

Moniz’s remarks came as the U.S. Department of Energy prepares to select a winner for the second tranche of its total $452 million funding award for small modular reactors (SMRs). SMRs represent potential cost savings over large conventional reactors because manufacturers could build them in more of an assembly line fashion, and users could purchase modules in increments and thus reduce upfront capital costs.

Many SMR designs also support operations at temperatures ranging from around 600 degrees C to 900 degrees C, considerably higher than conventional reactors. A number of high temperature reactor developers are vying for the DOE award, including San Diego’s General Atomics. X-Energy Inc., a Greenbelt, Maryland-based company that is developing a pebble bed reactor based on older South Africa designs, is also believed to have submitted. So, reportedly, have a number of standard temperature SMR developers, including NuScale of Corvallis, Wash., and Westinghouse.

DOE granted its first round a year ago to Babcock & Wilcox for its mPower reactor, a scaled down version of a conventional reactor that does not operate at the high temperatures that could supply industrial heat. Days before Moniz presented at last week’s conference, Babcock announced that it wants to sell up to 70 percent of the company in order to continue building the SMR. The company is hoping to install four of the reactors at the Clinch River site in Tennessse, in partnership with construction and engineering giant Bechtel and with the Tennessee Valley Authority, a power provider.

The winner of round two won’t necessarily be a company developing a high temperature reactor.

CHASING CHINA

Despite Moniz’s public endorsement for advanced reactors, the DOE trails China’s concerted efforts. Those include a two-year-old collaboration with three DOE-backed U.S. universities – the University of California Berkeley, the Massachusetts Institute of Technology and the University of Wisconsin –  in molten salt coolants for solid-fueled high temperature pebble bed reactors. DOE has provided the three universities with $7.5 million.

I asked Moniz after his presentation what measures DOE might take to step up its commitment to advanced reactors and bridge the gap with countries like China.

“I can’t say too much specifically,” he said. “But let’s just say we are trying to marshall some resources to increase our focus in that area.”

High temperature reactors provide other power benefits in addition to supporting industrial processes. For example, they support a more efficient electricity generating process, which cuts the cost of electricity.

And like all nuclear, high temperature reactors emit no CO2 during the generating process while having a very low CO2 footprint over the lifetime of a nuclear plant including mining fuel and constructing reactors.

OBAMA’S BACKING

Addressing nuclear in general, Moniz said that nuclear is “very clearly part of the solution set” in President Obama’s strategy to mitigate man-made climate change by shifting to low CO2 technologies.

“There is no one low carbon solution,” Moniz said, noting that nuclear is “not a silver bullet” but that “neither are any of the other technologies.”

Moniz cited a recent open letter by four renowned climate scientists calling for nuclear power to help stave off the ravages of man-made CO2 induced climate change. In that letter, signed by long time climate campaigner and Columbia University professor James Hansen among others, the scientists push for the deployment of new reactor types.

“I would argue that the discussion about whether we need to respond to climate change is largely over,” said Moniz, coming down squarely on the “respond” side.

The energy secretary also quoted Obama in urging continued development of nuclear energy for a multitude of reasons.

“When we enhance nuclear security, we’re in a stronger position to harness safe clean nuclear energy,” said Moniz, quoting from a speech that the president delivered at South Korea’s Hankuk University in March 2012, which continued, “When we develop new safer approaches to nuclear energy, we reduce the risk of nuclear terrorism and proliferation.”

That includes the development of advanced, high temperature reactors.

Photo is from Lynn Freeny, U.S. Government, via Flickr

Note: I’m in the midst of 10-day swing visiting various advanced nuclear initiatives up and down North America’s west coast. Stay tuned for more reports. – MH

 

James Hansen ArrestDC Tarsandsaction Wiki

James Hansen wants to arrest climate change by replacing fossil fuels with nuclear power. Above, a policeman handcuffs him outside the White House during a 2011 demonstration against TransCanada’s Keystone oil pipeline.

A group of four well-known climate scientists created a stir earlier this week with an open letter imploring environmentalists to back nuclear power as a low carbon energy source that can stave off the havoc of climate change.

With signatories including James Hansen, the Columbia University professor and longtime campaigner in the global warming fight,  the missive could put nuclear power firmly into the consciousness of this year’s United Nations Climate Change Conference kicking off in Warsaw on Nov. 11.

But what much of the general press missed in reporting on the clarion call was that the scientists were not simply advocating nuclear. They were pressing for  a move away from conventional nuclear technology – the uranium fueled, water cooled reactors of the last 50+ years – and toward alternative reactor types, such as those we write about here at Weinberg.

“We understand that today’s nuclear plants are far from perfect,” the letter stated. “Fortunately, passive safety systems and other advances can make new plants much safer. And modern nuclear technology can reduce proliferation risks and solve the waste disposal problem by burning current waste and using fuel more efficiently. Innovation and economies of scale can make new power plants even cheaper than existing plants.”

In addition to Hansen, who recently retired from over 30 years as head of NASA’s Goddard Institute of Space Studies, the authors included senior scientist Ken Caldeira of the Carnegie Institution for Science at Stanford University, atmospheric scientist Kerry Emanuel from MIT, and climate scientist Tom Wigley from Australia’s University of Adelaide.

REACTOR OPTIONS

For Hansen, alternative nuclear technology would include integral fast reactors (IFR) such as the PRISM reactor from GE-Hitachi which can burn plutonium and thus make use of existing nuclear “waste.” It can also breed fuel. Last year, Hansen, along with entrepreneur Richard Branson and GEH engineer Eric Loewen, wrote to U.S. President Barrack Obama encouraging support of IFRs (Loewen signed the letter in his then capacity as president of the American Nuclear Society).

Several other alternative reactor designs also augur improvement in safety, cost, efficiency, waste and weapons proliferation risks.

Those include molten salt reactors (MSRs), which deploy liquid fuel and which can operate safely at high temperatures and thus improve generating efficiencies and also serve as a clean heat source for high temperature industry processes that today rely on CO2-intense fossil fuels. MSRs also operate at atmospheric pressures rather than at potentially dangerous high pressure, and have a fail safe engineering that prevents meltdowns and and that allows fuel to drain harmlessly into a tank if necessary. They offer a number of other advantages, such as reduced waste and a potential to breed fuel.

Companies and countries developing MSRs include  China, Canada’s Terrestrial Energy, Japan’s Thorium Tech Solution, and Transatomic Power and Flibe Energy from the U.S., among others.

Other alternatives include another type of high temperature reactor called a “pebble bed reactor,” small modular reactors (which crosses many reactor types), and fusion.

THORIUM TOO

The alternative reactor types – as well as conventional reactors – could also tap thorium fuel rather than uranium. Proponents of thorium point out that it is more plentiful than uranium, that it has a higher energy content,  and that it can reduce waste and proliferation risk, among other benefits. Thor Energy in Norway is currently conducting thorium tests in a conventional reactor. Scientists at the University of Cambridge and elsewhere believe that thorium could potentially be re-used over and over again in modified conventional reactors.

As I reported here recently from the Thorium Energy Conference 2013 in Geneva, thorium supporters include Nobel Prize winning physicist Carlo Rubbia and former chief UN weapons inspector Hans Blix. Conventional French nuclear giant Areva last week publicly stated that is investigating thorium possibilities.

This week’s letter by Hansen and his fellow climate scientist did not mention the alternative technologies by name, but issued a call “for the development and deployment of advanced nuclear energy.”

It said that “renewable” energy technologies such as wind and solar simply won’t be enough to avoid further serious consequences from global warming.

NUCLEAR ENVIRONMENTALISTS

Many formerly anti-nuclear environmentalists have crossed over into the pro-nuclear camp, a theme conveyed in the feature length documentary film Pandora’s Promise. This week’s letter hopes to broaden that trend.

“We appreciate your organization’s concern about global warming, and your advocacy of renewable energy. But continued opposition to nuclear power threatens humanity’s ability to avoid dangerous climate change,” it said.

It further noted that, “Renewables like wind and solar and biomass will certainly play roles in a future energy economy, but those energy sources cannot scale up fast enough to deliver cheap and reliable power at the scale the global economy requires. While it may be theoretically possible to stabilize the climate without nuclear power, in the real world there is no credible path to climate stabilization that does not include a substantial role for nuclear power.”

It’s no coincidence that Hansen et al published the letter in the run-up to the two-week UN conference, where policy makers from around the world will attempt to agree on action to slow the effects of climate change. Often, these annual UN confabs – such as the 2009 Copenhagen installment – are remembered more for what they did not accomplish than anything else. Let’s see if Warsaw 2013 can at least leave some sort of positive nuclear impression.

For a full copy of the letter click here.

Photo is from Tarsandsaction via Wikimedia

HuXongjie AnilKakodkar IndiaTHEC13 Dinner

China’s Xu Hongjie (r) and India’s Anil Kakodkar chat after dinner at the Thorium Energy Conference in Geneva this week. Xu leads China’s TMSR programme. Kakodkar, former chairman of India’s Atomic Energy Commission and one-time head of the country’s Bhabha Atomic Research Centre, champions thorium use in his country.

GENEVA – Thorium-fueled high temperature reactors could help alleviate China’s energy and environmental problems – including water shortages – by providing not only low carbon electricity but also clean heat for industrial processes and power for hydrogen production, the scientist in charge of developing the reactors said here.

Xu Hongjie of the Chinese Academy of Sciences (CAS) in Shanghai indicated that one of the two reactors he’s developing should be ready in a 100-megawatt demonstrator version by 2024, and for full deployment by 2035. A second one, based on liquid thorium fuel instead of solid, would come later, he said, hinting that it might not yet have full government financial backing.

In a presentation at the Thorium Energy Conference 2013 (ThEC13) here, he referred to both reactors as thorium molten salt reactors (TMSR). The solid fuel version uses “pebble bed” fuel – much different from today’s fuel rods – and molten salt coolant. The liquid version uses a thorium fuel mixed with molten salt. Both run at significantly higher temperatures than conventional reactors, making them suitable as industrial heat sources in industries such as cement, steel, and oil and chemicals. The thorium can also reduce the waste and the weapons proliferation threat compared to conventional reactors.

“The TMSR gets support from the Chinese government, just because China is faced with a very serious challenge, not only for energy, but also for the environment,” Xu said. He noted that several regions of China face water shortages in large part because China’s many coal-fired power plants require water for for cooling, as do China’s 17 conventional nuclear reactors.

“Water scarcity is very serious for China,” he said. “Most of the water has been consumed by electricity companies – for coal but also nuclear.”

GIGAWATTS AND GIGAWATTS

Nuclear reactors will help slow the growth of China’s CO2 emissions. The country today gets about 80 percent of its electricity from CO2-spewing fossil fuels. As China ramps up generating capacity to an estimated 3,000 gigawatts by 2030 – more than double today’s level – it will need to find low-carbon sources to mitigate climate change consequences.

Xu is the director of CAS’ of Thorium Molten Salt Reactor (TMSR), based at the Shanghai Institute of Applied Physics, overseeing what he said is a $400 million project (China has described it in the past as $350 million). He calls the solid fuel reactor a “TMSR-SF,” and the liquid reactor a “TMSR-LF”.

One of two timelines (see below) that Xu included in his presentation showed that he expects to complete a 2-megawatt pilot for the solid fuel version by around 2015, and a 100-MW demonstrator model of the same by 2024, before readying it for live use in 2035 in “small modular” form (general industry nomenclature would call the solid fuel version an “FHR”, or fluoride salt-cooled high temperature reactor).

That timeline did not show a target date for a 2-MW liquid-fueled pilot reactor, which a year ago appeared to have slipped from 2017 to 2020. It did, however, show a 10-MW liquid-fueled pilot at around 2024, and a demonstrator version by 2035. It did not include a commercialization date. “For liquid, we still need the financial support from the government,” Xu said (story continues below chart).

XuHongjie TMSR Timeline

Solidifying the future. The solid fuel (TMSR-SF) molten salt cooled thorium reactor will be ready before the liquid fuel model (LF).

Xu explained that the liquid version requires more complicated development than the solid version, such as “reprocessing of highly radioactive fuel salts.” But the reprocessing, when worked out, will become an advantage because it will allow re-use of spent fuel, whereas the “open” fuel cycle of the solid version will not, he noted. Xu said that the solid fuel version is a “precursor” to the liquid-fuel reactor.

A second timeline showed plans for developing larger TMSRs, with a 1-gigawatt capacity. It showed “commercialization” for the solid fuel version by around 2040, when the liquid 1-GW machine would reach a “demonstrator” state. The timeline does not show commercialization plans for the 1-GW liquid version. It does, however, show that a 2-MW “experimental” liquid TMSR could by ready by around 2017 (story continues below chart).

XuHongjie 1GW TMSR Timeline

This slide, part of Xu Hongjie’s presentation, shows the timeline for a large TMSR, and suggests it would be used for hydrogen production.

After his presentation, I asked Xu to clarify the difference between the two timelines and the state of government financing, but he declined.

The second timeline shows the 1-GW reactors going to work for hydrogen production, a process that China mentioned at last year’s conference, held in Shanghai. Xu reiterated that China would combine hydrogen with carbon dioxide to form methanol, a clean energy source.

MULTIPLE USES

China has also talked about using TMSRs for coal gasification, and to convert coal to olefin and coal to diesel.

Xu told me the TMSRs would be used for electricity generation as well, although one slide in his presentation notes that the aim is to develop “non-electric” applications. Earlier this week at the conference, Nobel prize winning physicist Carlo Rubbia repeated an observation of his from a few years ago that China could generate the 2007 equivalent of its total electricity production – 3.2 trillion kWh, using a relatively small amount of thorium.

With those ambitious plans and with the program currently funded at around $400 million, Xu suggested that at some next stage the TMSR program will need an extra $2 billion “for the whole alternatives.”

China is collaborating with the U.S. Department of Energy on the molten salt-cooled reactor, which is the only publicly declared MSR programme in the world with funding in the hundreds of millions of dollars.

The four-day ThEC, which ended on Thursday, included a clarion call from former UN weapons inspector Hans Blix for thorium fuel as an anti-proliferation choice, and an equally loud entreaty by Rubbia who said thorium has “pre-eminence” over uranium, the conventional nuclear fuel. One big uranium devotee, nuclear giant Areva, announced a thorium collaboration with Belgian chemical company Solvay.

The conference, on the campus of international physics lab CERN, featured lively discussions of how best to deploy thorium, including driving them with particle accelerators, and using uranium isotopes to start a thorium fission reaction.

Photo of Xu Hongjie and Anil Kakodkar is by Mark Halper.

Charts are from Xu Hongjie’s ThEC13 presentation.

Hans Blix: Shift to thorium, minimize weapons risk

Posted by Mark Halper on October 29th, 2013

Hans Blix CERN THEC13

Thorium on his mind. Hans Blix says it’s time for the nuclear industry to move away from uranium.

GENEVA – Hans Blix, the disarmament advocate who famously found no weapons of mass destruction in Iraq a decade ago, said today that thorium fuel could help reduce the risk of weapons proliferation from nuclear reactors.

Addressing the Thorium Energy Conference 2013 here, Blix said that nuclear power operators should move away from their time-honoured practice of using uranium fuel with its links to potential nuclear weapons fabrication via both the uranium enrichment process and uranium’s plutonium waste.

“Even though designers and operators are by no means at the end of the uranium road, it is desirable today, I am convinced, that the designers and the others use their skill and imagination to explore and test other avenues as well,” Blix said.

“The propeller plane that served us long and still serves us gave way to the jet plane that now dominates,” said the former United Nations chief weapons inspector who also ran the International Atomic Energy Agency from 1981 to 1997. “Diesel engines have migrated from their traditional home in trucks to a growing number of cars and cars with electric engines are now entering the market. Nuclear power should also not be stuck in one box.”

Blix rattled off a list of thorium’s advantages, noting that “thorium fuel gives rise to waste that is smaller in volume, less toxic and much less long lived than the wastes that result from uranium fuel.” Another bonus: thorium is three to four times more plentiful than uranium, he noted.

“The civilian nuclear community must do what it can to help reduce the risk that more nuclear weapons are made from uranium or plutonium,” Blix said. “Although it is enrichment plants and plutonium producing installations rather than power reactors that are key concerns, this community, this nuclear community, can and should use its considerable brain power to design reactors that can be easily safeguarded and fuel and supply organizations that do not lend themselves to proliferation. I think in these regards the thorium community may have very important contributions to make.”

Blix described the obstacles that are in the way of a shift to thorium and other nuclear alternatives as “political” rather than “technical.”

Not everyone agrees that thorium is a proliferation cure for the nuclear power industry. Even some supporters of thorium note that thorium fuel cycles yield elements such as uranium 233 that groups could use to make a bomb if they were able to get a hold of it.

The lively discussions surrounding these and other thorium issues will continue tomorrow at the conference, which is taking place at CERN, the international physics laboratory. Earlier at the gathering today, conventional nuclear giant Areva announced a thorium collaboration with Belgian chemical company Solvay. Yesterday, Nobel prize-winning physicist Carlo Rubbia lauded thorium for its “absolute pre-eminence” over uranium.

Photo of Hans Blix by Mark Halper

© The Alvin Weinberg Foundation 2014
The Alvin Weinberg Foundation is a registered UK charity. Charity number: 1155255
The Alvin Weinberg Foundation web site uses cookies to record visitor patterns.
Read our data protection policy

Design by Tauri-tec Ltd and the Alvin Weinberg Foundation