Posts Tagged DOE

NuScale OnTruck ChenectedAichieOrg

Alternative nuclear rolled ahead a bit this week, as the U.S. DOE agreed to fund NuScale’s small modular reactor, transportable on the back of a truck.

The U.S. Department of Energy has taken another “small” step toward shaking the nuclear industry out of its uninventive ways and towards innovative reactors that augur lower costs and improved operations and safety for a low CO2 future: It has granted up to $226 million in funding to an Oregon startup that is developing a “small modular reactor.”

The award to Corvallis, Oregon-based NuScale Power marks the second tranche of a $452 million program that DOE announced in March 2012. It comes a year after DOE’s first grant to North Carolina-based Babcock & Wilcox. That grant was reported at up to $225 million at the time, although DOE told me today that it has so far committed $101 million to the five-year B&W project through March 2014 and that it is currently reviewing the release of additional funds.

“Small modular reactors represent a new generation of safe, reliable, low-carbon nuclear energy technology,” U.S. Energy Secretary Ernest Moniz said in announcing the award to NuScale. “The Energy Department is committed to strengthening nuclear energy’s continuing important role in America’s low carbon future.”


Like B&W, the NuScale design calls for a scaled-down conventional reactor, fueled by solid uranium, cooled by ordinary water and operated in a pressurized environment. By virtue of its smaller size, the NuScale “Integral Pressurized Water Reactor” (IPWR) portends lower costs because in principle it could be factory-built in more of an assembly line manner than could large conventional reactors; the idea is to ship them to a site via truck, rail or barge for final assembly. The “integral” design fits a reactor and a steam generator in an 80-foot by 15-foot cylinder.

The small size would also allow users such as utilities to purchase new reactors in less expensive increments rather than paying billions of dollars up front for conventionally sized reactors, which reach well over a gigawatt in electrical capacity. At 45 megawatts electric, the NuScale reactor provides about 3 percent the output of a 1.3-GW reactor. NuScale’s “modular” design permits up to 12 of the pressurized water reactors in a plant, for a total capacity of 540 MW.

NuScale, founded in 2007, has designed the IPWR to sit underground, thus protecting it from attack. The IPWR deploys a “passive cooling” system that would release a pool of water from above the reactor in the event of an emergency, rather than rely on pumps to circulate water (failed auxiliary electricity systems knocked out cooling at Japan’s Fukushima reactor, leading to meltdowns there).


NuScale partner Energy Northwest, a Richland, Wash. company that produces power for utilities, said that NuScale could develop a commercial six-to-12-reactor plant on the site of Idaho National Laboratory by 2024, which Energy Northwest would have the right to operate. Utah Associated Municipal Power Systems, a cooperative of government entities that pools electrical power resources, is also part of the scheme.

U.K. engineering stalwart Rolls Royce is also part of the NuScale small modular project. NuScale is majority owned by $27.6 billion engineering company Fluor Corp., based in Irving, Texas.

The presence of several companies in the NuScale project echoes the B&W small modular reactor venture which won the first tranche of DOE’s $452 million in SMR funding. B&W is working with U.S. construction firm Bechtel, and with federal power provider Tennessee Valley Authority. They hope to deploy four 180-MW reactors at TVA’s Clinch River, Tennessee site, via a joint venture called Generation mPower that is 90 percent owned by B&W and 10 percent by Bechtel.

That project took a peculiar turn recently, when B&W said it plans to sell 70 percent of its interest in mPower – including intellectual property.

A DOE spokeswoman said that DOE has so far committed $101 million to B&W through March, 2014. Possible further funding is currently under review, she said. B&W’s five-year federal funding period began in December, 2012. If DOE released more funds, the total would not exceed $226 million, the same five-year cap on the NuScale funding, which runs through Dec. 2018. In both cases, DOE would also be limited to funding no more than half of project costs, the spokeswoman said. She added that there will be no more grants under the $452 million Funding Opportunity Announcement (FOA).


While the DOE grant helps to push U.S. nuclear in a new direction of smaller and less expensive reactors, it stopped short of endorsing altogether new reactor designs that would support much higher operating temperatures.

These so-called “fourth generation reactors” include liquid fuel reactors known as molten salt reactors, as well as solid fuel reactors using “pebble bed” and “prismatic” fuel structures rather than conventional rods.  They would provide many additional advantages. For instance, they typically operate in unpressurized environments, which is a safety benefit over today’s pressurized reactors. They tend to leave less long-lived waste.

At higher temperatures they also generate electricity more efficiently, which lowers generating costs and would help nuclear compete in a market where natural gas prices are currently low. Unlike natural gas generation, nuclear power generation is carbon free, and the nuclear lifecycle is low-carbon.

And as Secretary Moniz himself noted last month, high temperature reactors could serve as sources of low-carbon heat for industrial processes and thus expand nuclear power beyond its role of generating electricity.

A number of high temperature reactor developers vied for the DOE award that went to NuScale, including San Diego’s General Atomics, and X-Energy Inc., a Greenbelt, Maryland-based company that is developing a pebble bed reactor based on older South Africa designs.

Stay tuned to the Weinberg site as we delve into some of these alternative reactor designs in our upcoming blog posts.

Photo is from NuScale via ChenectedAiche

Cancel the Chattanooga Choo Choo. Assistant Energy Secretary Pete Lyons called off his trip to Tennessee's Oak Ridge National Laboratory when the government shut down last month. He's pictured here on an ORNL visit earlier this year, but not one relating to the advanced nuclear collaboration with China.

Cancel the Chattanooga Choo Choo. Assistant Energy Secretary Pete Lyons called off his trip to Tennessee’s Oak Ridge National Laboratory when the government shut down last month. He’s pictured here on an ORNL visit earlier this year, but not one relating to the advanced nuclear collaboration with China.

Those of you who object to the U.S. sharing advanced nuclear reactor designs with China might snigger at this news. Those of you who support the collaboration will find it dismaying: Last month’s U.S government shutdown forced the Department of Energy to cancel a rare high level meeting with China regarding the two nations’ ongoing partnership in molten salt reactor development.

But while the collaboration’s bosses failed to meet for the key appointment, the roster of U.S. contributors has been expanding to include additional universities and industrial members, such as Bill Gates’ nuclear company TerraPower.

According to people familiar with the situation, DOE Assistant Secretary Peter Lyons was due to travel to Tennessee’s Oak Ridge National Laboratory in October to meet with the project’s Chinese co-leader, presumably Jiang Mianheng. Lyons and Jiang were the two co-chairs of the collaboration when it began in Dec. 2011.

With the itineraries set and with sensitive travel visas in place for Jiang and his Chinese delegation, something happened on the way to Tennessee: The U.S. government closed its doors for two weeks when Congress failed to agree on general budgetary appropriations.

The shutdown took out all manner of government operations including national energy labs such as Oak Ridge (ORNL), where in the 1960s the U.S. built a molten salt reactor, the designs for which are part of the DOE/China advanced reactor partnership.

I’ve sent several emails to Lyons and to a DOE spokesperson asking whether Lyons and Jiang have rescheduled, but they have not replied. Around the time that DOE and the Chinese Academy of Sciences (CAS) entered the agreement in December, 2011, Jiang was the president of CAS’ Shanghai branch. He is the son of China’s former president, Jiang Zemin.


The two countries are sharing information related to a molten salt cooled, solid-fuel reactor that would safely operate at high temperatures and thus serve as a more efficient electricity generator than today’s “cooler” conventional reactors, and that would also serve as a valuable source of clean industrial heat, replacing fossil fuels. The reactors also portend safety, waste, and proliferation advantages over traditional nuclear.

China plans to build a prototype of a 2-megawatt “pebble bed” reactor by around 2015, and a 100-megawatt demonstrator by 2024.

It is also planning to build a reactor that is both cooled and fueled by liquid salts – a “molten salt reactor” (MSR). It plans a 10-MW prototype by 2024.  DOE has said that the collaboration only entails salt-cooled technologies, and is not specifically exploring MSRs, which many experts regard as a logical and superior next step after the development of a salt-cooled reactor.

Jiang has expressed intentions of using high temperature reactors not just to feed the grid with electricity – cleanly powering future fleets of electric cars –  but also to provide heat for processes like hydrogen production (he wants to then turn the hydrogen into methanol) for coal gasification, and to turn coal into products including olefin and diesel.

Earlier this month, U.S. Energy Secretary Ernest Moniz told a nuclear conference in Irvine, Calif. that the U.S. could have similar uses for high temperature reactors.

“Small modular reactors, especially high temperature ones, may have a particular role there essentially as heat sources,” Moniz told delegates at the Future of Advanced Nuclear Technologies gathering organized by the National Academy of Sciences and the Keck Futures Initiative. He outlined a number of possible applications, including “process heat, water desalination, hydrogen production, petroleum production and refining.”


Moniz told the conference that he recently traveled to China to help promote the Westinghouse AP1000, a conventional reactor with improved safety features, designed by Westinghouse, the U.S. subsidiary of Japan’s Toshiba. There are currently four AP1000s under construction in China, with more planned. Westinghouse and China are co-marketing AP1000 reactor technology beyond China.

At the Irvine gathering, Moniz did not mention the DOE/China high temperature reactor collaboration.

He also did not provide any details on how the U.S. might beef up its commitment to advanced reactor development; when I asked him, he would say only that he hopes to “marshall” resources. By comparison, China’s commitment is much more significant and multifaceted. It is backing the molten salt project at CAS  – just one of China’s several advanced reactor projects – with about $400 million, and hopes to produce a prototype as soon as 2015.

DOE has provided $7.5 million in funding to three universities – MIT, the University of California Berkeley, and the University of Wisconsin – for advanced reactor development, with a focus on molten salt cooled, solid fueled designs.  Those three universities plus ORNL were seminal members of the DOE/China collaboration, and Westinghouse has been advising them on how to eventually commercialize their technology.

Researchers from those entities and from China have met for four separate collaborative workshops over the last two years, my sources tell me. Those gatherings have not included chairmen Lyons and Jiang. A fifth workshop is planned for January, at UC Berkeley.


Meanwhile, the core group of workshop participants has grown to include TerraPower, the Seattle company chaired by Gates which has been widening its nuclear net.  TerraPower continues with its original mission to develop a fast reactor that it calls a traveling wave reactor, but has encountered a few technical snags and is now investigating other possibilities as well including molten salt reactors and thorium fuel.

Other new participants have included San Diego-based General Atomics which is developing a high temperature solid fuel, helium-cooled reactor that it calls the Energy Multiplier Module (EM2). From academia, the Georgia Institute of Technology, the University of Michigan, Ohio State University and the University of New Mexico have also joined the workshops.

General Atomics has submitted its EM2 as a candidate for the second tranche of DOE’s $452 million award for small modular reactors — reactors that are smaller than today’s gigawatt-plus behemoths and portend significant costs savings. Most advanced high temperature reactors are suitable for small modular form, with sizes ranging from around 30 MW to around 500. GA is competing against other high temperature reactor makers for the award, including X-Energy. Conventional temperature machines are also in the hunt, including one from Westhinghouse and another from Corvallis, Ore.-based NuScale.

A year ago DOE awarded the first tranche, of around $225 million, to Babcock & Wilcox for its mPower reactor, a scaled down version of an ordinary temperature conventional reactor. B&W announced earlier this month that it needs to sell a 70 percent stake in the joint venture company developing mPower in order to continue.

Photo is from U.S. government via Flickr

U.S. energy secretary: Deploy nuclear for industrial heat

Posted by Mark Halper on November 22nd, 2013

Moniz OakRidge Y12

Hot on nuclear. Secretary Moniz says that advanced reactors could furnish clean industrial heat. He also backs President Obama’s point that new and safer nuclear improves energy security and reduces proliferation risks. The Y12 sign in the background reminds us of the proliferation connection. Y12 is a defense related unit at DOE’s Oak Ridge facility, where Moniz spoke in this June photo.

IRVINE, CALIF. – The notion that nuclear reactors could provide clean, CO2-free heat for industrial process – and thus expand nuclear power’s role beyond electricity generation – got a big boost here when U.S. Energy Secretary Ernest Moniz endorsed the idea.

Speaking via a video link last Friday to a nuclear power and medicine conference, Moniz said that reactors currently under development – often called “advanced” or “fourth generation” reactors and typically small in size – could safely operate at much higher temperatures than conventional models and would be key to broadening nuclear’s role.

“Small modular reactors, especially high temperature ones, may have a particular role there essentially as heat sources,” Moniz told delegates at the Future of Advanced Nuclear Technologies gathering organized by the National Academy of Sciences and the Keck Futures Initiative. He outlined a number of possible applications, including “process heat, water desalination, hydrogen production, petroleum production and refining.”

At the moment, the U.S. lags behind at least one country, China, in supporting the development of advanced reactors such as molten salt and pebble bed reactors. Jiang Mianheng, who heads the development of molten salt reactors (MSRs) in China (Jiang is the son of China’s former president Jiang Zemin), has stated that China plans to use them for hydrogen production, gasifying coal, methanol manufacturing and other purposes. China recently released revised timelines for two of its high temperature reactors. It hopes to build a 2-megawatt pilot pebble bed by around 2015, and a 100-megawatt pebble bed demonstrator by 2024, among others.


Moniz’s remarks came as the U.S. Department of Energy prepares to select a winner for the second tranche of its total $452 million funding award for small modular reactors (SMRs). SMRs represent potential cost savings over large conventional reactors because manufacturers could build them in more of an assembly line fashion, and users could purchase modules in increments and thus reduce upfront capital costs.

Many SMR designs also support operations at temperatures ranging from around 600 degrees C to 900 degrees C, considerably higher than conventional reactors. A number of high temperature reactor developers are vying for the DOE award, including San Diego’s General Atomics. X-Energy Inc., a Greenbelt, Maryland-based company that is developing a pebble bed reactor based on older South Africa designs, is also believed to have submitted. So, reportedly, have a number of standard temperature SMR developers, including NuScale of Corvallis, Wash., and Westinghouse.

DOE granted its first round a year ago to Babcock & Wilcox for its mPower reactor, a scaled down version of a conventional reactor that does not operate at the high temperatures that could supply industrial heat. Days before Moniz presented at last week’s conference, Babcock announced that it wants to sell up to 70 percent of the company in order to continue building the SMR. The company is hoping to install four of the reactors at the Clinch River site in Tennessse, in partnership with construction and engineering giant Bechtel and with the Tennessee Valley Authority, a power provider.

The winner of round two won’t necessarily be a company developing a high temperature reactor.


Despite Moniz’s public endorsement for advanced reactors, the DOE trails China’s concerted efforts. Those include a two-year-old collaboration with three DOE-backed U.S. universities – the University of California Berkeley, the Massachusetts Institute of Technology and the University of Wisconsin –  in molten salt coolants for solid-fueled high temperature pebble bed reactors. DOE has provided the three universities with $7.5 million.

I asked Moniz after his presentation what measures DOE might take to step up its commitment to advanced reactors and bridge the gap with countries like China.

“I can’t say too much specifically,” he said. “But let’s just say we are trying to marshall some resources to increase our focus in that area.”

High temperature reactors provide other power benefits in addition to supporting industrial processes. For example, they support a more efficient electricity generating process, which cuts the cost of electricity.

And like all nuclear, high temperature reactors emit no CO2 during the generating process while having a very low CO2 footprint over the lifetime of a nuclear plant including mining fuel and constructing reactors.


Addressing nuclear in general, Moniz said that nuclear is “very clearly part of the solution set” in President Obama’s strategy to mitigate man-made climate change by shifting to low CO2 technologies.

“There is no one low carbon solution,” Moniz said, noting that nuclear is “not a silver bullet” but that “neither are any of the other technologies.”

Moniz cited a recent open letter by four renowned climate scientists calling for nuclear power to help stave off the ravages of man-made CO2 induced climate change. In that letter, signed by long time climate campaigner and Columbia University professor James Hansen among others, the scientists push for the deployment of new reactor types.

“I would argue that the discussion about whether we need to respond to climate change is largely over,” said Moniz, coming down squarely on the “respond” side.

The energy secretary also quoted Obama in urging continued development of nuclear energy for a multitude of reasons.

“When we enhance nuclear security, we’re in a stronger position to harness safe clean nuclear energy,” said Moniz, quoting from a speech that the president delivered at South Korea’s Hankuk University in March 2012, which continued, “When we develop new safer approaches to nuclear energy, we reduce the risk of nuclear terrorism and proliferation.”

That includes the development of advanced, high temperature reactors.

Photo is from Lynn Freeny, U.S. Government, via Flickr

Note: I’m in the midst of 10-day swing visiting various advanced nuclear initiatives up and down North America’s west coast. Stay tuned for more reports. – MH


HuXongjie AnilKakodkar IndiaTHEC13 Dinner

China’s Xu Hongjie (r) and India’s Anil Kakodkar chat after dinner at the Thorium Energy Conference in Geneva this week. Xu leads China’s TMSR programme. Kakodkar, former chairman of India’s Atomic Energy Commission and one-time head of the country’s Bhabha Atomic Research Centre, champions thorium use in his country.

GENEVA – Thorium-fueled high temperature reactors could help alleviate China’s energy and environmental problems – including water shortages – by providing not only low carbon electricity but also clean heat for industrial processes and power for hydrogen production, the scientist in charge of developing the reactors said here.

Xu Hongjie of the Chinese Academy of Sciences (CAS) in Shanghai indicated that one of the two reactors he’s developing should be ready in a 100-megawatt demonstrator version by 2024, and for full deployment by 2035. A second one, based on liquid thorium fuel instead of solid, would come later, he said, hinting that it might not yet have full government financial backing.

In a presentation at the Thorium Energy Conference 2013 (ThEC13) here, he referred to both reactors as thorium molten salt reactors (TMSR). The solid fuel version uses “pebble bed” fuel – much different from today’s fuel rods – and molten salt coolant. The liquid version uses a thorium fuel mixed with molten salt. Both run at significantly higher temperatures than conventional reactors, making them suitable as industrial heat sources in industries such as cement, steel, and oil and chemicals. The thorium can also reduce the waste and the weapons proliferation threat compared to conventional reactors.

“The TMSR gets support from the Chinese government, just because China is faced with a very serious challenge, not only for energy, but also for the environment,” Xu said. He noted that several regions of China face water shortages in large part because China’s many coal-fired power plants require water for for cooling, as do China’s 17 conventional nuclear reactors.

“Water scarcity is very serious for China,” he said. “Most of the water has been consumed by electricity companies – for coal but also nuclear.”


Nuclear reactors will help slow the growth of China’s CO2 emissions. The country today gets about 80 percent of its electricity from CO2-spewing fossil fuels. As China ramps up generating capacity to an estimated 3,000 gigawatts by 2030 – more than double today’s level – it will need to find low-carbon sources to mitigate climate change consequences.

Xu is the director of CAS’ of Thorium Molten Salt Reactor (TMSR), based at the Shanghai Institute of Applied Physics, overseeing what he said is a $400 million project (China has described it in the past as $350 million). He calls the solid fuel reactor a “TMSR-SF,” and the liquid reactor a “TMSR-LF”.

One of two timelines (see below) that Xu included in his presentation showed that he expects to complete a 2-megawatt pilot for the solid fuel version by around 2015, and a 100-MW demonstrator model of the same by 2024, before readying it for live use in 2035 in “small modular” form (general industry nomenclature would call the solid fuel version an “FHR”, or fluoride salt-cooled high temperature reactor).

That timeline did not show a target date for a 2-MW liquid-fueled pilot reactor, which a year ago appeared to have slipped from 2017 to 2020. It did, however, show a 10-MW liquid-fueled pilot at around 2024, and a demonstrator version by 2035. It did not include a commercialization date. “For liquid, we still need the financial support from the government,” Xu said (story continues below chart).

XuHongjie TMSR Timeline

Solidifying the future. The solid fuel (TMSR-SF) molten salt cooled thorium reactor will be ready before the liquid fuel model (LF).

Xu explained that the liquid version requires more complicated development than the solid version, such as “reprocessing of highly radioactive fuel salts.” But the reprocessing, when worked out, will become an advantage because it will allow re-use of spent fuel, whereas the “open” fuel cycle of the solid version will not, he noted. Xu said that the solid fuel version is a “precursor” to the liquid-fuel reactor.

A second timeline showed plans for developing larger TMSRs, with a 1-gigawatt capacity. It showed “commercialization” for the solid fuel version by around 2040, when the liquid 1-GW machine would reach a “demonstrator” state. The timeline does not show commercialization plans for the 1-GW liquid version. It does, however, show that a 2-MW “experimental” liquid TMSR could by ready by around 2017 (story continues below chart).

XuHongjie 1GW TMSR Timeline

This slide, part of Xu Hongjie’s presentation, shows the timeline for a large TMSR, and suggests it would be used for hydrogen production.

After his presentation, I asked Xu to clarify the difference between the two timelines and the state of government financing, but he declined.

The second timeline shows the 1-GW reactors going to work for hydrogen production, a process that China mentioned at last year’s conference, held in Shanghai. Xu reiterated that China would combine hydrogen with carbon dioxide to form methanol, a clean energy source.


China has also talked about using TMSRs for coal gasification, and to convert coal to olefin and coal to diesel.

Xu told me the TMSRs would be used for electricity generation as well, although one slide in his presentation notes that the aim is to develop “non-electric” applications. Earlier this week at the conference, Nobel prize winning physicist Carlo Rubbia repeated an observation of his from a few years ago that China could generate the 2007 equivalent of its total electricity production – 3.2 trillion kWh, using a relatively small amount of thorium.

With those ambitious plans and with the program currently funded at around $400 million, Xu suggested that at some next stage the TMSR program will need an extra $2 billion “for the whole alternatives.”

China is collaborating with the U.S. Department of Energy on the molten salt-cooled reactor, which is the only publicly declared MSR programme in the world with funding in the hundreds of millions of dollars.

The four-day ThEC, which ended on Thursday, included a clarion call from former UN weapons inspector Hans Blix for thorium fuel as an anti-proliferation choice, and an equally loud entreaty by Rubbia who said thorium has “pre-eminence” over uranium, the conventional nuclear fuel. One big uranium devotee, nuclear giant Areva, announced a thorium collaboration with Belgian chemical company Solvay.

The conference, on the campus of international physics lab CERN, featured lively discussions of how best to deploy thorium, including driving them with particle accelerators, and using uranium isotopes to start a thorium fission reaction.

Photo of Xu Hongjie and Anil Kakodkar is by Mark Halper.

Charts are from Xu Hongjie’s ThEC13 presentation.

Chu Obama Charles Watkins Wiki

“Before I go Mr. President, let me tell you about these molten salt reactors.” That’s a completely made-up conversation. But outgoing U.S. Energy Secretary Steven Chu (l), this week did say that small modular reactors will be key to the country’s low carbon energy future. MSRs are one variety of them.

You might have missed the quiet announcement earlier this week: The U.S. Department of Energy has opened a second round in its $450 million program to fund small modular nuclear reactors, following its grant to Babcock & Wilcox late last year.

In a logical scenario, the next recipient would receive about $227 million, or roughly the same as what B&W is believed to have won.

“The Energy Department will solicit proposals for cost-shared small modular reactor projects that have the potential to be licensed by the Nuclear Regulatory Commission and achieve commercial operation around 2025,” DOE said in a press release.

Small modular reactors (SMRs) are much smaller than the gigawatt-plus size of new conventional designs. DOE said it is “seeking 300 megawatts or smaller.”

They auger lower costs because they can be manufactured in more of an assembly-line manner and transported complete to a site, and because they would allow utilities and other end users to add power in increments. They also lend themselves to installation in remote areas where they could provide a less expensive alternative to diesel generators.


Another advantage: they can potentially serve as sources of clean heat for industrial processes in factories and oil fields.

Outgoing Energy Secretary Steven Chu made it clear that they are an important part of a low carbon energy future.

“As President Obama said in the State of the Union, the Administration is committed to speeding the transition to more sustainable sources of energy,” Chu said in the release. “Innovative energy technologies, including small modular reactors, will help provide low-carbon energy to American homes and businesses, while giving our nation a key competitive edge in the global clean energy race.”

The DOE release also says that SMRs will offer “innovative and effective solutions for enhanced safety, operations and performance.”


With all that in mind, it seems to me that DOE should take a serious look at molten salt reactors (MSRs) and pebble bed reactors (PBRs), rather than only look at shrunken versions of conventional uranium fueled, water-cooled reactor, such as what B&W is building with its 180-megawatt mPower reactor (utility Tennessee Valley Authority plans to deploy two mPower units by 2021).

“Conventional” SMR companies like Nuscale Power, Gen4 Energy  and Westinghouse could well vie for the next round with small water-cooled reactors. But is this not also a funding opportunity for MSR companies like Huntsville, Ala.’s Flibe Energy and Cambridge, Mass.-based Transatomic Power?

Most MSR designs tick the “smaller” box, and would certainly qualify in the “enhanced safety, operations and performance” category. They are meltdown proof, operate at normal atmospheric pressure rather than at the high pressure of  many water-cooled designs, and they make more efficient use of fuel because they operate at higher temperatures. They also leave less waste, and in certain designs, can use nuclear wast as fuel. DOE’s 2025 target would be feasible.

Transatomic might be counted out if it sticks firmly to its intention to build a 500-megawatt reactor, which is above the 300 megawatt ceiling stated by DOE. But it seems that at their early stage of development, Transatomic could tinker with size.

Flibe fits right into the modular size, as it’s targeting between 10 and 50 megawatts, and up to 250 megawatts.


And don’t rule out a pebble bed option, either. Like MSRs, gas-cooled PBRs run at high temperatures. They fit well into small, modular form factors. A DOE-China collaboration ties the two ideas together, as it is looking into using molten salt coolants in solid fuel high temperature reactor (MSRs uses molten salts as part of their liquid fuel mix, as well as for the coolants that aborb the heat of a nuclear reaction and transfer it to a turbine).

In fact conventional giant Westinghouse is the commercial adviser to the DOE-China project, so it could have an interest in applying for funding for an alternative design, although it is almost certainly much further along with its small conventional reactor.

There is plenty of cross-pollinated interest among the various alternative parties that together could build a case for funding alternative nuclear. Westinghouse  – the commercial adviser to the U.S.-China molten salt coolant project – ran the Advanced Reactors track at last November’s American Nuclear Society’s annual winter conference (ANS) in San Diego, where the presentations included molten salts and high temperature reactors.

They also included talks by University of California Berkeley nuclear engineering head Per Peterson (he chaired the 5-day conference as well), who is known for his  interest in pebble bed reactors and in molten salt coolants. Peterson is also on the board of advisors at MSR company Flibe. In fact Peterson chaired the 5-day conference. Massachusetts Institute of Technology research scientist Charles Forsberg, a member of the DOE-China team, also presented in the alternative nuclear track.

Another MIT expert, Richard Lester, is a key adviser to MSR company Transatomic. Lester is the head of the department of nuclear science and engineering at MIT, where he is also the “Japan Steel Industry Professor” (I conjure up images of molten salt reactors supplying heat to steel mills when I see that).


And MIT, of course, is home to President Obama’s nominee for Chu’s replacement as Energy Secretary, the pro-nuclear physicist Ernest Moniz.

These individuals are not all united behind all the same causes and companies, but most of them share a big vested interest in alternative nuclear. It seems as though together, they could raise government interest – and backing – in the area.

Of course they’ll have to find funding elsewhere as well. I could imagine an oil company getting behind the development of a small MSR, for among other reasons, to use as a heat source. Or space agency NASA. The military might also want to invest – an MSR could help domestic bases disconnect from the creaky public grid, as Flibe president Kirk Sorensen has pointed out.

How about venture capital? Maybe. Flibe has added Bram Cohen to its board of advisers. Cohen is the founder of Internet company BitTorrent, where he has experience at raising $40 million in venture capital. Transatomic is getting ready to attempt a “Series A” round of venture financing.

Those possibilities could make a good mix. A DOE award should be a possibility. In the current round it might be a long shot. But so was the moon.

Photo from Charles Watkins, White House photographer, via Wikimeda

An energy elixir for 2013: Molten salts

Posted by Mark Halper on January 2nd, 2013

Western Hydrogen plans to use molten salts to produce hydrogen from oil sand residue this year north of Edmonton near Fort Saskatchewan in western Canada, partnering with Aux Sable.

The nuclear community tends to associate molten salts with the eponymous molten salt reactor. And well it should. MSR reactors use special liquids – molten salts – to operate at much higher temperatures than conventional reactors, auguring all sorts of advantages including efficiency, waste reduction and improved safety, among others.

It thus behoves the industry to develop and win regulatory approval for MSRs as future sources of CO2-free electricity and industrial heat.

But as 2013 gets under way (and as Mumbai’s Conference on Molten Salts in Nuclear Technology approaches), now seems like a good time to point out that the same thermal properties that make molten salts a potential nuclear tonic could also give them a broader role in the world’s energy mix.

Molten salts, as the name implies, are salts that melt when they hit a high temperature. Exactly how high depends on the particular salt (MSR reactors are expected to operate somewhere around 700 or 800 degrees C). They are stable, they don’t boil easily (a good thing when you need them in liquid form) and they flow like water.

It’s well known that molten salts could one day soon help store heat at solar farms, where they would circulate and absorb the sun’s heat by day and hold onto or release it at night or some later time when the sun doesn’t shine. In that scenario, molten salts would help overcome one of solar electricity’s shortcomings – its inability to generate electricity around the clock.


But here’s another potential use I stumbled across recently that could hold just as much promise, and probably more, than the solar application: Molten salts can help extract hydrogen while at the same time removing CO2 from hydrocarbons like oil sands, according to Western Hydrogen Ltd., a Calgary-based company.

Deploying molten salt technology developed at the U.S. Department of Energy’s Idaho National Laboratory, Western Hydrogen thinks it can pull hydrogen out of “carbonaceous” materials such as the bitumen in the oil sands common in Canada, as well as from other petroleum residue and petroleum coke.

The so-called molten salt catalyzed gasification process runs water and carbon compounds through a bed of high temperature (around 850 degrees C) molten salts, out of which comes hydrogen and “sequestration ready” carbon dioxide, Western Hydrogen’s website explains in a “low carbon” energy scenario.

The hydrogen could be used as transportation fuel in the elusive hydrogen economy, and it could also feed petrochemical production processes which today use hydrogen derived from more expensive and less environmentally friendly processes, Western Hydrogen claims.

Western Hydrogen also plans to use its process to yield carbon monoxide and deuterium (an isotope of hydrogen that, incidentally, is key to nuclear fusion plans) that it would combine into synthetic liquid fuels.


The company hopes to start operating a pilot plant during the first half of this year near Fort Saskatchewan, Alberta in partnership with Aux Sable, a Canadian company that processes “offgases” from oil sands and would thus provide Western Hydrogen with a feedstock of presumably bitumen. The plant is being fabricated by Burlington, Ontario-based Zeton.

Western Hydrogen, which says it funded the DOE project and has exclusive rights to the technology, hopes to establish a larger demonstration plant by late 2014 and to be “commercially ready” by 2015.  It appears to be targeting the oil sands industry as a main source of raw material.  Chairman Guy Turcotte and CEO Neil Camarta have extensive experience in the oil and oil sands industry.

The company also envisions a  “zero carbon” hydrogen production process in which it would feed algae and water into the molten salt bed and route the resulting CO2 back into an algae farm to help replenish the hydrogen production process. According to the company’s website, the process could also tap other biomass sources such as wood chips.

Western Hydrogen’s fondness for molten salts extends to other processes as well. In partnership with Salt Lake City based Ceramatec, it is developing a molten salt technique to “upgrade” bitumen into a pipeline-ready heavy fuel oil.

As I’ve pointed out here before, it seems that the money and the will to develop and use alternative reactors that promise a CO2-free energy future could ironically come in large measure from the fossil fuel industry, which could use the new technologies to improve and clean up their own production of CO2-emitting fuels (China certainly has such plans).

It seems the same impetus will be a driving force for molten salt technologies of various sorts.

Image taken from Western Hydrogen presentation available on company’s website.

Safe, safer, safest. There’s always room to improve, says U.S. Dept. of Energy deputy assistant secretary Edward McGinnis.

WARSAW – A senior official in the U.S. Department of Energy said here on Monday that as safe as conventional nuclear is, it is incumbent upon governments around the world to help industry develop even safer designs.

“Do we need to continue on behalf of our respective citizenry to advance the ball and come up with even safer designs – more secure, more efficient?  Yes we do,” said Edward McGinnis, deputy assistant secretary for international nuclear energy policy and cooperation. “And so government has a key role in that.”

McGinnis was addressing the World Nuclear Power Briefing Europe 2012 conference, organized by New Zealand-based conference firm Strategic Communications.

His remarks contrasted with those last week by World Nuclear Association acting director general Steve Kidd, who said he opposed any nuclear rebranding effort that might suggest that existing, safe reactors are not safe.

“I want to be clear that we have great faith in the reactors in our country and the situation worldwide,” DOE’s McGinnis agreed. “We have strong regulatory bodies, we have strong multilateral groups looking at regulatory.

“But in nuclear just like many things in life there is never one single end point where you should stop trying to improve. We should always be seeking to improve. It doesn’t suggest that we don’t have effective systems today, which we do. But we need to continuously advance the technologies and the approaches and processes.”


While that includes adding safety features and improving fuel tolerance in conventional reactors, it also “absolutely includes” developing other reactor types, McGinnis said.

“We’re looking beyond light water (conventional) reactors through R&D,” he said, noting that DOE has taken a particular interest in sodium cooled fast reactors and in high temperature gas reactors.

Technical experts at the DOE “need to validate” whether  technologies like those as well as molten salt designs are suitable for applications that could include serving as a source of industrial process heat, he said.

DOE’s international projects include a collaboration with China to develop molten salt coolants, an initiative in which U.S.-based Westinghouse is serving as commercial adviser.

China intends to use the coolant in a reactor that uses liquid thorium fuel, similar to the liquid thorium molten salt reactor (TMSR)  that Oak Ridge National Laboratory built in the 1960s before President Nixon terminated the project.

DOE has said it wants to test the coolant in a high temperature reactor, but not necessarily one that uses liquid fuel such as in a TMSR.


Some thorium supporters have criticized the collaboration, claiming that the U.S. should advance TMSR technology itself rather than help provide it to China.

“We ensure that our collaboration is balanced, reciprocal and appropriate,” McGinnis replied when I asked him about those concerns. “We have a positive technical set of collaborations with them that extends into the high temperature gas reactor and other areas.”

He noted that China is a major developer of nuclear energy and is investing heavily in research and development of alternatives.

“It’s a shrinking global world, and so we have to work together and I think it’s a very positive reflection of China and the United States – that we’re collaborating,” he said.

The project, which includes DOE’s Oak Ridge lab in Tennessee and three U.S universities – MIT, the University of California Berkeley, and the University of Wisconsin – could be an example of how the DOE finds what McGinnis called the “sweet spot” of assisting industry in R&D without getting involved in commercial power generation.

In a notable step toward facilitating alternative nuclear, DOE last month awarded funding to a group led by Babcock & Wilcox to develop a “modular” reactor that is much smaller than traditional reactors and that could cut end user costs.

Photo by Mark Halper

Independent thinking: Babcock & Wilcox CEO James Ferland says modular reactors will help assure U.S. energy independence.

Chalk up a small victory for alternative nuclear power in the West. The U.S. Department of Energy will help North Carolina-based Babcock & Wilcox develop and build a “small modular reactor.”

DOE announced recently that it had awarded funding to a B&W-led group that also includes federally owned electricity provider the Tennessee Valley Authority (TVA), and U.S. construction firm Bechtel Corp.

TVA is applying for a license from the U.S. Nuclear Regulatory Commission to deploy up to 4 of B&W’s 180-megawatt mPower reactors at TVA’s Clinch River site in Oak Ridge, Tennessee, where the project is based.

In announcing the decision, Energy Secretary Steve Chu issued an assurance that nuclear has a solid place in the government’s plans for a low carbon future – an assertion that many nuclear supporters would welcome, but with an “I’ll believe more when I see more” shrug.

“The Obama Administration continues to believe that low-carbon nuclear energy has an important role to play in America’s energy future,” said Chu.  “Restarting the nation’s nuclear industry and advancing small modular reactor technologies will help create new jobs and export opportunities for American workers and businesses, and ensure we continue to take an all-of-the-above approach to American energy production.”


Small modular reactors would provide alternatives to large gigawatt-plus nuclear reactors, allowing utilities or private users to add nuclear capacity without having to spend many billions of dollars in upfront costs associated with conventional behemoth reactors.

They could also provide low cost power in remote areas – where expensive and CO2-heavy diesel generators are often used – and can be an effective heat and electricity source for industrial operations. In principle they can be factory-made and transported by truck. They still have some heft though – a New York times blog on B&W’s plans refers to mPower’s “towering metal shell.”

B&W’s mPower and other SMRs  that DOE evaluated are essentially scaled down versions of conventional water cooled, solid fuel uranium reactors.

As such, they are not as pronounced a departure from traditional nuclear as are other designs that we track here at Weinberg, such as liquid molten salt reactors, pebble bed reactors and fast neutron reactors. Those typically fit the “modular” form factor and in many instances will deploy thorium fuel, portending safer and more efficient nuclear operations than with uranium fuel.

South Africa’s Steenkampskraal Thorium Ltd, for instance, is developing a 35-megawatt (electric) pebble bed reactor. Flibe Energy in Huntsville, Alabama, also has modular sizes in mind for its liquid thorium molten salt reactor.


Neither DOE nor B&W would disclose the amount of funding DOE is providing. Various published reports including in the Charlotte Business Journal (Charlotte, North Carolina) and pegged it at $225 million.

“Through a five-year cost-share agreement, the Energy Department will invest up to half of the total project cost, with the project’s industry partners matching this investment by at least one-to-one,” DOE’s press release states. “The specific total will be negotiated between the Energy Department and Babcock & Wilcox.”

The award was part of a project to fund $450 million of SMR development that DOE announced last March, so the $225 million would represent half of that programme.

The New York Times had a more modest sense of the funding, noting, “At one point it (DOE) anticipated a $452 million program over five years, but so far Congress has appropriated only $67 million. The department is asking for another $65 million for the fiscal year that began on Oct. 1. Also, the department has not said how much it was providing to Babcock & Wilcox.”

B&W CEO James Ferland welcomed the funding. “With this public-private partnership, the DOE is providing important national leadership for America in the global pursuit of SMR technology,”  he said. “This partnership is essential to reestablishing our nation’s international competitiveness in the nuclear energy industry, as well as enhancing U.S. manufacturing infrastructure and energy independence. “

The company wasted no time in demonstrating momentum. About a week after winning the funding, it announced it had contracted Bethlehem, Pennsylvania-based Lehigh Heavy Forge Corp. to fabricate the shell.


B&W is believed to have beaten rivals Westinghouse and NuScale for the award.  DOE said it still plans to fund other SMR projects. Westinghouse is developing an SMR that is a smaller version of its large AP1000 “passively cooled” reactor.

But Westinghouse is also partnering with DOE and China on the development of alternative design reactors that can run on thorium or uranium.

The award to B&W is an encouraging sign that DOE is investing outside the traditional nuclear box.  It would be no small development if DOE were to next apply some of its $450 million modular budget to altogether different reactor designs, not just reduced-sized ones.

Photo: Nancy Pierce via Charlotte Business Journal

University of California Berkeley nuclear engineering head Per Peterson is a fan of molten salts and other alternative nuclear. He’ll chair the ANS proceedings in San Diego. Above, he examines a model of a     pebble bed reactor in this photo from KQED Quest.

When we launched our blog here at the Weinberg Foundation in late September, we nicknamed it The Thorium Trail and pledged to travel the world spotting the emergence of alternative, safe nuclear technologies such as thorium.

And travel we have, as our path has included a real world landing last week in Shanghai – where we journeyed from our London base – as well as virtual stops in Norway, South Africa, Jordan, and the United States. Through the wonders of the Internet, we’ve skimmed uranium mines in Namibia and Australia, and have brushed up against oil sands in Canada, where small reactors could help cut fossil fuel-driven heat use.

We’re not resting.  We can’t.  Not when the world will need safe nuclear as a base load power source to help stem the effects of fossil fuel induced climate change that dramatically took centre stage a week ago when Hurricane Sandy clobbered New York and New Jersey.

Today, we turn our attention to San Diego for a quick preview of the 5-day American Nuclear Society’s annual winter conference, which kicks off this Sunday, Nov. 11.


Have a look at the agenda here – click on the page’s “official program” link. On the surface, there’s not much going on related to thorium, the alternative to uranium that if run in the right type of reactor offers all manner of advantages over today’s nuclear plants: it’s safer, more efficient, meltdown proof, produces less waste and it reduces the weapons proliferation threat.

In the impressively busy 60 pages, the word “thorium” appears only once.

That is disappointing – shameful, really –  but it’s not a surprise. Of the conference’s eleven sponsors, seven are U.S. utilities – not known as the most progressive bunch when it comes to their nuclear power. The top two “platinum” backers are utility behemoths Duke Energy and Southern California Edison. The old guard is not going to shout about a new fuel like thorium that could disrupt its comparatively comfortable – and time honoured – uranium value chain.

Yet the conference will thankfully be chock full of sessions on alternative nuclear reactor designs (albeit not alternative fuel).  After all, ANS is assembling this year’s conclave under the heading Future Nuclear Technologies: Resilience and Flexibiity.

By inference, thorium will be in the collective consciousness, as many of the formal sessions will focus on technologies that could be optimized by using thorium rather than uranium – technologies such as such as molten salt cooling systems and high temperature reactors.


Let’s start at the top.  The conference’s general chair is University of California Berkeley  nuclear engineering department head and professor Per E. Peterson. Peterson has a rich background researching many advanced nuclear technologies, and his UC Berkeley bio notes that “currently his research group focuses primarily on heat transfer, fluid mechanics, regulation and licensing for high temperature reactors, principally designs that use liquid fluoride salts as coolants.”

I’ve added the boldface type in that last sentence because it bears noting that one of the most promising alternative designs for a thorium-fuelled reactor is indeed one that runs at a high temperature while cooled by liquid fluoride.

So there you go. The conference chair – the man running the San Diego show – has a keen interest in a thorium enabling technology, if not in thorium per se.

In fact, high temperature, molten salt reactors are the subject of the U.S. Department of Energy’s collaboration with China’s Chinese Academy of Sciences. CAS, as I wrote from Shanghai last week, is developing a liquid thorium molten salt cooled and fuelled  reactor (TMSR). The completion date has slipped, and China is welcoming expertise from the U.S., which developed a TMSR at Oak Ridge National Laboratory in the 1960s under the direction of Alvin Weinberg.

DOE has said its interest in the collaboration focuses on the liquid coolant applied to high temperature reactors, but that unlike its Chinese collaborator, it is not currently investigating liquid thorium fuel.


It’s not entirely clear why not, but MIT research scientist Charles Forsberg, who will be speaking several times in San Diego on fluoride coolants, might be able to provide an answer.  Forsberg is part of the DOE/China collaboration. DOE has tapped MIT, Peterson’s UC Berkeley, and the University of Wisconsin as partners in the collaboration which includes DOE labs Oak Ridge and Idaho National Laboratory.

Pittsburgh’s Westinghouse is serving as a commercial adviser on the same collaboration. So it seems no coincidence that when Forsberg and Peterson combine on Thursday in San Diego to give eight presentations related to salts and high temperatures, they will do so under a track chaired by Westinghouse nuclear engineer Art Wharton. It’s entitled Advanced Reactors.

Westinghouse, which does not like to publicly discuss its alternative reactor work, has had a hand in many of the sessions planned for the week, including those focused on small modular reactors, and one focused on a travelling wave reactor (the fast reactor that Bill Gates is building, although some say Gates has abandoned the “travelling wave” for a “standing wave” – more on that another time).

Outside of considerable of sessions dedicated to fluoride salt coolants, there will be plenty of talk surrounding other alternative reactor technologies.


Fast reactors like San Diego-based General Atomics’ energy multiplier module are on the docket (GA is a co-sponsor of the conference which is taking place in its back yard).

So, too, are modular reactors – the small designs that could represent reduced upfront costs, provide electricity to remote off-grid regions and workplaces, and serve as industrial heat sources.

Equally, high temperature pebble bed reactors (PBRs) will take the spotlight in several technical sessions. Again, the discussion will not revolve around thorium. That’s an unfortunate oversight given that thorium could optimize pebble bed operations – a fact not lost on South Africa’s Steenkampskraal Thorium Ltd. which, as I wrote recently, is assembling a group of customers to help finance development of its gas cooled thorium fuelled PBR.

Any “future nuclear” technology conference would not be complete without fusion tracks, and the ANS conclave will have that as well – fusion is one of Peterson’s research subjects. The fusion discussions will include a look at tritium in both fusion – where it is a fuel – and in fission – where it is a waste, or byproduct. MIT’s Forsberg will be among the experts addressing the subject.

The one mention of thorium in the agenda? A 25-minute talk scheduled Wednesday morning by Terry Kammash from the University of Michigan, entitled Hybrid Thorium Reactor for Safe, Abundant Power Generation. It’s part of a group of presentations falling under the general heading Reactor Physics Design, Validation and Operating Experience and including a talk on liquid fast reactors.


For a broad overview of all of these technologies, ANS president Michael Corradini will chair a Tuesday afternoon forum entitled Ten Years Since the Generation IV Roadmap: Progress and Future Directions for New Reactor Technologies, followed logically by a Wednesday morning look at what the next 10 years hold.

A session entitled Telling the Nuclear Story Using Online Video and Broadcast should remind every one that it behooves the nuclear industry to effectively communicate its advantages to the public, especially in the wake of the Fukushima tragedy. Panelists will include Cara Santa Maria, the host of Huffington Post’s Talk Nerdy to Me.

As I’ve wandered onto the “PR” subject, here’s some free advice to ANS: you’ve done a good job assembling experts on many promising forms of alternative nuclear. It is beginning to feel like some of these alternatives could soon get  a more serious look from investors. Let’s hope so. But you gotta talk thorium, too.

Photo: Gabriela Quirós for KQED Quest.

Note: We won’t be in San Diego, but we’ll have our ear to the ground. Will you be there? Feel free to send your impressions. You could comment below, or use the “contact” tab above. Thank you –MH.

Taking the heat. Speaking at today’s Thorium Energy Conference, Jiang Mianheng said heat from high temperature reactors will power industrial processes.

SHANGHAI – Thorium fuelled nuclear reactors will play a key role helping China secure energy independence and reduce carbon emissions, not only by generating electricity but also by providing clean heat for industrial processes.

So said Jiang Mianheng, president of the Shanghai branch of the Chinese Academy of Sciences, in an address to the Thorium Energy Conference 2012 here today.

China’s industrial applications for the reactors will include extracting hydrogen to combine with carbon dioxide and form methanol, an environmentally friendly transportation fuel, Jiang said (see our report last week on China’s “nuclear powered car”).

The country will also use the reactors to turn fossil fuels into other useful compounds by supporting processes such as coal gasification, coal-to-olefin, and coal-to-diesel.

Nuclear electricity would also help usher in electric vehicles, he noted.  China’s few EVs today draw power largely from coal-fired stations.

While China will also deploy conventional nuclear, alternatives like thorium will contribute to the country’s push for energy independence. Today China imports more coal than it gets from its own mines. Jiang also cited a BP report that forecasts China will import 75 percent of its oil by 2030, and about 40 percent of its natural gas.

“That gives us an energy security issue,” said Jiang, whose father, Jiang Zemin, was president of the People’s Republic from 1993 to 2003. “We have a huge gap. We can rely on outside China, or we can develop ourselves.”


Compounding the situation, Jiang noted that China’s export driven economy requires more energy than does an import economy.

And for all its famous growth, China and its 1.4 billion people are still urbanizing and industrializing – Jiang pointed out that only about 45-to-50 percent of China’s GDP comes from traditional industry.

“We need a high density energy – that is why we need nuclear energy,” he said.

China is also looking to nuclear to help clean up its pollution mess.

A sunny day in Shanghai. The sun was allegedly out yesterday in Shanghai, when this was the view of     pylons carrying a lot of coal-fired electricity. Nuclear can help clean up the mess.

“We need to worry about the sky pollution, or air pollution,” Jiang added. The country has committed to getting 15 percent of its primary energy from non-fossil fuel sources by 2020.

Jiang is the chairman of CAS’ thorium molten salt reactor (TMSR) steering committee, overseeing development of a TMSR that uses liquid thorium fuel, at CAS’ Shanghai Institute of Applied Physics (SINAP). Liquid TMSRs are intended to provide a safe, meltdown-proof, weapons-resistant alternative to conventional solid fuel uranium reactors.

They are cooled by liquid molten salt that allows them to operate at significantly higher temperatures, thus providing heat. Jiang is targeting 900 degrees C and possibly higher.

“Then we can use this energy to produce hydrogen.  We can convert the CO2, which is not waste at all, but is raw material for our chemicals if we can collect them,” he said. “That’s what we call the hybrid energy system.”


Jiang’s team is collaborating with the U.S. Department of Energy on development of a high temperature, molten salt cooled reactor design. The U.S. built and then abandoned a liquid TMSR reactor at Oak Ridge National Laboratory (ORNL) in the 1960s and early 70s.

DOE has said that its collaboration with China focuses on molten salt coolants, rather than on molten salt fuel. China is advancing both, and has other thorium reactors under development in addition to the TMSR initiative, which is part of CAS’ Shanghai Institute of Applied Physics.

CAS and DOE entered their memorandum of understanding last December. After his public presentation today, Jiang told me that the collaboration is proceeding well. He was scheduled to meet later in the day in Shanghai with the president of the University of California Berkeley, one of threeU.S. universities participating in the DOE/CAS partnership – MIT and the University of Wisconsin are also participating.

In addition a SINAP delegate had just departed for meetings ORNL, he said.

The conference, co-sponsored by CAS/SINAP and the International Thorium Energy Organisation, runs through Thursday. Tomorrow, CAS/SINAP will provide an update on its TMSR development. We’ll be watching.

Photos by Mark Halper

© The Alvin Weinberg Foundation 2014
The Alvin Weinberg Foundation is a registered UK charity. Charity number: 1155255
The Alvin Weinberg Foundation web site uses cookies to record visitor patterns.
Read our data protection policy

Design by Tauri-tec Ltd and the Alvin Weinberg Foundation