Posts Tagged Regulation

Engineers echo politicians: SMRs could help the UK post-Brexit

Posted by Suzanna Hinson on May 11th, 2017

Following the recent publication of the Business, Energy and Industrial Strategy (BEIS) Select Committee’s report on the nuclear industry post-Brexit, the Institution for Mechanical Engineers have echoed their findings. In a report published last week (Leaving the EU, the Euratom Treaty Part 2: A Framework for the Future) the Institution argues that small modular reactors could be the key to securing the UK’s nuclear future post-Brexit.

The risks to the UK nuclear industry post-Brexit are well known, with leaving Euratom a particular concern that could damage nuclear innovation, as well as risk fuel supply and confuse regulation. The Institution’s report suggests some paths the UK Government could take to tackle this key issue Brexit poses. For instance, they recommend developing a UK Safeguarding Office to conform to international rules, as there is no fall back to Euratom in a no-deal scenario. This would cover regulation of safety and non-proliferation. In the Institution’s (and in Weinberg’s) view, the UK would ideally seek associate membership of Euratom to continue research and development cooperation.

This research and development commitment is key, with the Institution’s argument in this report being that Small Modular Reactors (SMRs) could be the sector that secures the nuclear industry’s success post-Brexit. As such they recommend pursuing the currently delayed SMR competition, opportunities for demonstration and commercialisation, and collaboration with devolved and local government to ensure sites are developed. The report mentions Trawsfynydd in Wales as one such option for development.

Jenifer Baxter, the Institution’s head of energy and environment and lead author of the report, said “The UK’s departure from the EU and Euratom is likely to be complicated and difficult, but it also presents the country with an opportunity to reshape its nuclear industry and once again become a world-leading innovator in nuclear technology.”

Weinberg Next Nuclear believe the Government should take very seriously the reports from the BEIS Select Committee and the Institution of Mechanical Engineers, and make the production of a nuclear strategy plan a priority. Brexit poses many risks to the UK nuclear industry and it is essential that these be managed to allow the UK’s nuclear sector to thrive again.

https://www.imeche.org/news/news-article/small-modular-reactors-could-provide-uk-with-key-opportunities-post-brexit

 

Leaving Euratom: the government should reconsider

Posted by Suzanna Hinson on January 27th, 2017

It has been confirmed that the UK intends to leave the European Atomic Energy Community (Euratom) as part of the Brexit process. Following their loss in the Supreme Court last week, the government has produced a bill on triggering Article 50 to put to a commons vote. As part of the explanatory notes of this very short bill, was the revelation that Britian will be leaving both the EU and Euratom. Euratom, a separate legal entity to the EU but governed by EU institutions, has controlled nuclear power in Europe since 1957.

The move has been met with shock by the industry, with Dr Paul Dorfman, honorary senior researcher at the Energy Institute at University College London, calling it a “lose-lose situation” due to the potential for reduced competitiveness and reduced safety. There will be increased pressure on the already under-resourced Office for Nuclear Regulation to cover all of Euratom’s responsibilities including non-proliferation inspections, authorizing the sale of nuclear material and safeguarding power, fuel fabrication and waste sites. Alternatively the UK would need to negotiate with the International Atomic Energy Agency for help with this new burden. The decision will likely impact the UK’s plans for new power stations, research, skills development and dealing with the waste legacy.

The decision will also likely mean the eventual loss of the world leading Fusion experiment based in Culham, Oxfordshire, involving 350 scientists and funding from 40 countries, to another country such as Germany or France. This loss could risk perpetrating across the nuclear research space, with the isolation from Euratom making the UK far less attractive for research and innovation leading to a funding and brain drain at the very time the UK is trying to reinvigorate its nuclear leadership through it’s Industrial Strategy.

A complex set of negotiations will now have to take place as most nuclear co-operation with the UK relies on safeguards provided through Euratom. It may not be possible to agree and ratify new agreements before Britain leaves the EU in 2019. According to Vince Zabielski, a senior lawyer at law firm Pillsbury Winthrop Shaw Pittman, “current new build projects will be placed on hold while those standalone treaties are negotiated” meaning possible delays at Hinkley as well as Bradwell, Moorside and Wylfa.

The decision however is not just bad for the UK, but for nuclear as a whole. With the UK one of the last big supporters of the technology, weakening its strength in the field will give power to anti-nuclear camps across the continent.

Weinberg Next Nuclear is very concerned that the departure from Euratom could severely damage the UK’s nuclear industry, with impacts on energy security, industrial competitiveness and decarbonisation objectives. We find no reason why such drastic action needs to be taken. Article 50 deals with the two Treaties of Lisbon: the Treaty on the European Union and the Treaty on the Functioning of the European Union. However the Euratom treaty is separate, not mentioned in either of the above treaties thus there is no reason for including Euratom in any part of Article 50 debate. As Jonathan Leech, a senior lawyer and nuclear expert at Prospect Law said, “there doesn’t seem to have been any real explanation as to why, because we are going towards the unknown at great speed. Legally we don’t have to [leave Euratom because the UK is leaving the EU],”.

Weinberg Next Nuclear thus urges the government to reconsider and avoid the highly damaging consequences this unnecessary withdrawal could have on the UK’s nuclear future.

ONR delays AP1000 GDA

Posted by Suzanna Hinson on December 8th, 2016

The UK’s Office for Nuclear Regulation (ONR) has said in its latest quarterly report that although it expects to complete the Generic Design Assessment (GDA) process for the Advanced Boiling Water Reactor (ABWR) in December 2017 as planned, delays are expected with its other assessment, the AP1000 which is scheduled for completion in March.

The AP1000 is a Westinghouse design pursued by NuGeneration, a join venture of France’s Engie and Japan’s Toshiba. The reactor is planned for Moorside in West Cumbria but this delay will set back plans.

ONR said Westinghouse’s commitment to the process was “welcome” and they had already submitted “multiple revisions” of documents in some places. They claimed technical issues arising from assessments and a compression of the schedule as the key challenges.

Weinberg Next Nuclear argued in our last report that regulatory processes were posing an unnecessary delay to nuclear in the UK. The approval process is vital but ONR capacity should be expanded to prevent it being overly slow. The ONR is hiring and expanding but this delay to the AP1000 shows the process is still acting as a big hurdle to progress. Also in our report, we recommended that there should be more cooperation internationally over new reactor technology. The AP1000 has been approved for use in several countries, including the USA where there are four reactors already under construction. Working more closely with the US Nuclear Regulatory Commission and others around the world could lessen the workload for the ONR and improve progress.

The UK used to be a world leader in nuclear power and is currently embracing the need for sustainable, reliable, low carbon nuclear power to meet our current and future energy needs. However current designs, like the Hinkley European Pressurised Reactor, do not represent the best possible technology options for the UK. To move forward with new, advanced designs such as Small Modular and Molten Salt Reactors, the UK’s regulatory process needs attention so that it no longer poses as a barrier to progress.

Weinberg Next Nuclear are delighted to share this submission from May 2016 by Professor Wade Allison to the Science and Technology Committee of the UK Commons. Wade Allison is Emeritus Professor of Physics at the University of Oxford where he researched and taught for 40 years as a Fellow of Keble College. He has studied the risks involved in radiological and nuclear accidents as seen from medical, scientific and popular perspectives. He has published two excellent books, in 2009 Radiation and Reason: The Impact of Science on a Culture of Fearand in 2015 Nuclear is for Life: A Cultural Revolution, which Weinberg Next Nuclear highly recommend.

 

1. Summary

Life is naturally well protected against all but the very highest radiation exposures and evolutionary biology has ensured this so that life may survive. The low casualty record in all radiological and nuclear accidents confirms the effectiveness of this protection, as do laboratory experiments and the benefits of radiation as used in clinical medicine for over a century.

The commonly held view that radiation is exceptionally dangerous has been sustained by: a) residual memory of Cold War threats; b) unfamiliarity with the broad role of biology; c) a taste for the more exciting stories of accidents offered by the media; d) the guidance offered by a network of international safety committees that prefers caution to scientific evidence. This guidance has resulted in national regulations that specify that any exposure to radiation should be kept As Low As Reasonably Achievable (ALARA), for no scientific reason.

While the radiation released in a radiological or nuclear accident has a small health effect, if any, the emergency procedures taken with international guidance themselves cause suffering, loss of life and severe socio-economic damage, sometimes on a global scale. Current policy that aims to appease public concern rather than educate people about radiation has caused plans for new nuclear plants to be strangled by unjustifiable regulatory hurdles and escalating costs, resulting in uncompetitive energy prices and increased carbon emissions.

Two conclusions:

•          Bottom up, on radiation and  nuclear energy we need a fresh programme of science-wide public education in schools and in the community as a whole via the media, omitting the ghoulish images used in the past. Local UK-based initiatives should contribute to worldwide re-education, for example through the BBC.

•          Top down, on radiation safety we need a complete change in international guidance. This should be based on scientific understanding and evidence, not the unjustified precaution inherent in the ALARA/LNT philosophy.[3]Initiatives for such a change should be pursued and supported by the UK more formally.[4]

2. Scientific background

Because radiation has always been part of the natural environment, life has evolved protection against attack by it. Biological experiments and a century of clinical experience with life-saving radiotherapy have confirmed the efficacy of this protection, even for quite high doses. As for accidents, only in a handful of instances have radiation dose rates been high enough for this natural protection to fail causing loss of life; the largest being 4 deaths at the radiological accident at Goiania (1987) and 43 deaths at the nuclear accident at Chernobyl (1986). Further, because radioactivity (and the radiation it emits) do not catch and spread in the way that fire and infectious diseases do, nuclear and radiological accidents have a rather low direct impact on life, in strong contrast to what is generally supposed.

3. The accident at Fukushima Daiichi

Two weeks after the accident[5] I published an article on the BBC World Service,[6] We should stop running away from radiation. It discussed why the response to the accident was scientifically and sociologically inappropriate. In December 2011 I made a written submission to the Commons Science and Technology Select Committee on the subject.[7] Since the accident I have visited Japan four times, given public lectures there and discussed with doctors, social workers, community leaders, evacuees, school teachers and others involved on the ground.

4. The public view

The real impact of such accidents is transmitted through public opinion and the media. The damage to health is essentially social and mental – it manifests itself as public panic and a loss of confidence in science and society. At Chernobyl and also at Fukushima those who were exposed to radiation felt themselves condemned as if by a curse, resulting in alcoholism, family breakup and attitudes of hopelessness.[8] Few knew anything about radiation except for the historical link in the public consciousness between radiation and nuclear weapons including testing. During the period of the Cold War and Nuclear Arms Race fear of radiation was heightened for political and strategic reasons. However most people are surprised to learn that 99% of those killed at Hiroshima and Nagasaki died from the blast and fire and that only 1% died of cancer from the radiation explosion. Furthermore the medical records of the survivors families now available after fifty years confirm that there has been no detectable inherited effect from the radiation. The same is true for data from accidents and laboratory studies.

5. The view of the authorities

In their situation for the past 70 years national and international public authorities have been anxious to appease public concern about any radiological accident, and they have adopted an exceptional precautionary safety policy. By legalising radiation exposures only at a very low level it was believed that the public that they would come to no harm. Such a cautious approach may be appropriate for a technology before it is fully understood or when practical experience of it is limited, but for radiation high levels have been in regular clinical use worldwide for over a century so that this policy is restrictive. Nevertheless regulations in all nations do treat radiation as if it were an extraordinary hazard and safe limits are set As Low As Reasonably Achievable (ALARA) – in practice this means a small addition to the radiation that would be received anyway from natural processes. Thanks to the protection provided by nature this guidance is overly conservative by a factor in the region of a thousand.

6. When “the impossible” occurs

Under this draconian safety regime it is supposed that accidents should not happen, although this does not  reassure the public about nuclear safety, nor should it. There is no design of nuclear reactor that cannot be overwhelmed by nature and the public should be prepared for this unlikely event. Otherwise, when they see “the impossible” happening, they panic and loose all confidence in the authorities and in the ability of science to protect them – that is a fair description of the disaster that occurred at Fukushima in 2011. Recovery from such a loss of confidence is difficult. Unfortunately the nuclear authorities worldwide see their task in terms of engineering and management only, not radiobiology, teaching and psychology. Their natural reaction has therefore been to improve the physical safety of reactors even further. Unfortunately trying too hard to apply the wrong solution drives up costs without reason. This is the story of Hinkley C, perhaps, designed to be safe beyond the bounds of what is buildable, economic and necessary.

7. Education for confidence and safety

To be effective safety policy should concentrate on education to explain and make dangers more familiar. For example, fire drills are held regularly in institutions to train everybody so that they know what to do in the event of a fire. In addition from an early age every child is taught the danger of fire and how it can easily spread. Although nuclear radiation is far safer than fire people still need to become familiar with it, to know how it is detected with a simple alarm[9] and how to minimise personal exposure to it. Issuing instructions after an accident has occurred and the population is in a state of shock is too late. The public needs to understand beforehand so that individuals can take rapid and decisive action. This provides confidence at all times and informed response to an accident. What happened in March 2011 in Japan in response to the tsunami provides an example. The Japanese are taught about earthquakes and tsunamis at school and in public education. As a result they are prepared, and in the event 96% of those in the inundated region reached safety with only 30 minutes warning after the earthquake. The loss of 18,800 lives was seemingly understood and accepted, but the release of radioactivity from the damaged reactors at Fukushima Daiichi was not, even five years later. For this radiation there had been no public education and no proper plan. The result was widespread public shock even though there was no hospital admission due to the radiation itself – and the scientific evidence shows there will be no loss of life in the next fifty years. However the immediate loss of life caused by the inept and unnecessary evacuation has been put at 1600; wider social effects, from alcoholism to power shortages and increased reliance on carbon fuels, occurred as a result of the mutual loss of trust between the public and the authorities. None of this would have happened if there had been honest explanatory education about radiation, what it does to life (and what it does not), and discussion and familiarity with practice, as for earthquakes or fire.

8.  ALARA and the LNT Model

The authorities with responsibility for radiological accidents and radiation safety have pursued a policy based on ALARA dating back to the 1950s. Its rationale is a hypothesis called Linear No-Threshold (LNT) which basically says that any radiation exposure however slight is harmful. But this is not based on evidence. It is a pseudo-science like alchemy in earlier times. In that case the human emotion of avarice overrode the evidence encouraging the hope that base metals might be turned into gold. Here it is the human emotion of fear that makes the simplistic LNT attractive in spite of the contrary evidence. LNT contradicts the known principles of evolutionary biology and was discredited at length in a unanimous Joint Report published in 2005 by the Académie des Sciences and the Académie Nationale de Médecine, in Paris.[10] The evidence in this report has been denied by the international safety committees who also have not faced up to the cost and suffering for which their guidance based on ALARA/LNT is responsible. There is widespread concern amongst those who understand at this departure from science-based knowledge. In the past couple of years an international ad hocgroup of about 100 professional engineers, doctors, oncologists, biologists, physical scientists and others has joined forces to pursue this injustice in academic journals, internet media, professional societies, lectures, personal and political contacts in countries around the world. Of course it is very hard for any long-standing officially constituted international committee to execute a U-turn, but that is what is required and the policy of the UK should be to press for that.[11]Nations that first wholeheartedly embrace this new perspective of the human relationship with radiation should enjoy an important competitive advantage in the years ahead through cheaper energy, cultural leadership and a cleaner and safer environment.[12] The UK should be one of those nations.

 

Professor Wade Allison can be contacted for questions via this address: wade.allison@physics.ox.ac.uk

 


[1]ISBN 978-0-956275615  www.radiationandreason.com in paperback and Kindle editions

[2]ISBN 978-0-956275646  www.nuclear4life.com  in paperback and online editions.

[3]Acronyms for As Low As Reasonably Achievable and Linear No-Threshold hypothesis, see later

[4]A report quoting an example of such initiatives http://www.wsj.com/articles/a-nuclear-paradigm-shift-1449014295

[5]In this brief submission I use this accident as an example. The Goiania, Chernobyl and other accidents are covered elsewhere..

[6]http://www.bbc.co.uk/news/world-12860842

[7]http://www.publications.parliament.uk/pa/cm201012/cmselect/cmsctech/writev/risk/m04.htm

[8]http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf

[9]The technology of a domestic smoke alarm could provide a cheap solution if built into a mobile phone.

[10]http://www.ncbi.nlm.nih.gov/pubmed/16468064

[11]There is a superfluity of  such bodies UNSCEAR, ICRP, NEA, IAEA, WHO, etc. and many national ones too (in US: NAS, NRC, NCRP, EPA with more in UK and Japan).

[12]http://www.thomas-thor.com/blog/blog-61254160345

Hitachi-GE’s improvement on the Boiling Water Reactor has progressed to the final stage of the UKs regulatory process. The office of Nuclear Regulation (ONR) announced the completion of Step 3 of the Generic Design Assessment on 30 October, with the whole assessment scheduled to finish in 2017.

Step three focuses on the safety and security of the ABWR and requires Hitachi GE to present arguments and evidence to support their safety and security claims. The assessment is designed to be extremely rigorous and continues to assess the safety of every aspect of the design throughout its process.

The fourth and final phase of the process includes a detailed assessment of the design as well is further scrutiny of the safety and security. The environmental impact of the reactor will also be assessed, with a consultation with the Environment Agency (EA) and National Resources Wales (NRW).

A completed Generic Design Assessment must be coupled with a nuclear site license and regulatory approval for the construction of the reactor before a new nuclear power station can be built. Horizon Nuclear Power, a subsidiary of Hitachi Ltd, plans to build two ABWR is in the UK; in Wylfa Newydd on the Isle of Anglesey and Oldbury-on-Severn in South Gloucestershire.

This milestone in the regulatory process for an updated reactor design is a step in the right direction for building new and improved nuclear power reactors in the UK, and possibly paves the way for the next generation of advanced reactors to follow in the ABWR’s footsteps.

© The Alvin Weinberg Foundation 2014
The Alvin Weinberg Foundation is a registered UK charity. Charity number: 1155255
The Alvin Weinberg Foundation web site uses cookies to record visitor patterns.
Read our data protection policy

Design by Tauri-tec Ltd and the Alvin Weinberg Foundation